null

Overview

CP-Cluster

Confidence Propagation Cluster aims to replace NMS-based methods as a better box fusion framework in 2D/3D Object detection, Instance Segmentation:

[Confidence Propagation Cluster: Unleash the Full Potential of Object Detectors](arxivlink to do),
Yichun Shen*, Wanli Jiang*, Zhen Xu, Rundong Li, Junghyun Kwon, Siyi Li,

Contact: [email protected]. Welcome for any questions and comments!

Abstract

It’s been a long history that most object detection methods obtain objects by using the non-maximum suppression(NMS) and its improved versions like Soft-NMS to remove redundant bounding boxes. We challenge those NMS-based methods from three aspects: 1) The bounding box with highest confidence value may not be the true positive having the biggest overlap with the ground-truth box. 2) Not only suppression is required for redundant boxes, but also confidence enhancement is needed for those true positives. 3) Sorting candidate boxes by confidence values is not necessary so that full parallelism is achievable.

Inspired by belief propagation (BP), we propose the Confidence Propagation Cluster (CP-Cluster) to replace NMS-based methods, which is fully parallelizable as well as better in accuracy. In CP-Cluster, we borrow the message passing mechanism from BP to penalize redundant boxes and enhance true positives simultaneously in an iterative way until convergence. We verified the effectiveness of CP-Cluster by applying it to various mainstream detectors such as FasterRCNN, SSD, FCOS, YOLOv3, YOLOv5, Centernet etc. Experiments on MS COCO show that our plug and play method, without retraining detectors, is able to steadily improve average mAP of all those state-of-the-art models with a clear margin from 0.2 to 1.9 respectively when compared with NMS-based methods.

Highlights

  • Better accuracy: Compared with all previous NMS-based methods, CP-Cluster manages to achieve better accuracy

  • Fully parallelizable: No box sorting is required, and each candidate box can be handled separately when propagating confidence messages

Main results

Detectors from MMDetection on COCO val/test-dev

Method NMS Soft-NMS CP-Cluster
FRcnn-fpn50 38.4 / 38.7 39.0 / 39.2 39.2 / 39.4
Yolov3 33.5 / 33.5 33.6 / 33.6 34.1 / 34.1
Retina-fpn50 37.4 / 37.7 37.5 / 37.9 38.1 / 38.4
FCOS-X101 42.7 / 42.8 42.7 / 42.8 42.9 / 43.1
AutoAssign-fpn50 40.4 / 40.6 40.5 / 40.7 41.0 / 41.2

Yolov5(v6 model) on COCO val

Model NMS Soft-NMS CP-Cluster
Yolov5s 37.2 37.4 37.5
Yolov5m 45.2 45.3 45.5
Yolov5l 48.8 48.8 49.1
Yolov5x 50.7 50.8 51.0
Yolov5s_1280 44.5 50.8 44.8
Yolov5m_1280 51.1 51.1 51.3
Yolov5l_1280 53.6 53.7 53.8
Yolov5x_1280 54.7 54.8 55.0

Replace maxpooling with CP-Cluster for Centernet(Evaluated on COCO test-dev), where "flip_scale" means flip and multi-scale augmentations

Model maxpool Soft-NMS CP-Cluster
dla34 37.3 38.1 39.2
dla34_flip_scale 41.7 40.6 43.3
hg_104 40.2 40.6 41.1
hg_104_flip_scale 45.2 44.3 46.6

Instance Segmentation(MASK-RCNN, 3X models) from MMDetection on COCO test-dev

Box/Mask AP NMS Soft-NMS CP-Cluster
MRCNN_R50 41.5/37.7 42.0/37.8 42.1/38.0
MRCNN_R101 43.1/38.8 43.6/39.0 43.6/39.1
MRCNN_X101 44.6/40.0 45.2/40.2 45.2/40.2

Integrate into MMCV

Clone the mmcv repo from https://github.com/shenyi0220/mmcv (Cut down by 9/28/2021 from main branch with no extra modifications)

Copy the implementation of "cp_cluster_cpu" in src/nms.cpp to the mmcv nms code("mmcv/ops/csrc/pytorch/nms.cpp")

Borrow the "soft_nms_cpu" API by calling "cp_cluster_cpu" rather than orignal Soft-NMS implementations, so that modify the code like below:

@@ -186,8 +186,8 @@ Tensor softnms(Tensor boxes, Tensor scores, Tensor dets, float iou_threshold,
   if (boxes.device().is_cuda()) {
     AT_ERROR("softnms is not implemented on GPU");
   } else {
-    return softnms_cpu(boxes, scores, dets, iou_threshold, sigma, min_score,
-                       method, offset);
+    return cp_cluster_cpu(boxes, scores, dets, iou_threshold, min_score,
+                          offset, 0.8, 3);
   }
 }

Compile mmcv with source code

MMCV_WITH_OPS=1 pip install -e .

Reproduce Object Detection and Instance Segmentation in MMDetection

Make sure that the MMCV with CP-Cluster has been successfully installed.

Download code from https://github.com/shenyi0220/mmdetection (Cut down by 9/26/2021 from main branch with some config file modifications to call Soft-NMS/CP-Cluster), and install all the dependancies accordingly.

Download models from model zoo

Run below command to reproduce Faster-RCNN-r50-fpn-2x:

python tools/test.py ./configs/faster_rcnn/faster_rcnn_r50_fpn_2x_coco.py ./checkpoints/faster_rcnn_r50_fpn_2x_coco_bbox_mAP-0.384_20200504_210434-a5d8aa15.pth --eval bbox

To check original metrics with NMS, you can switch the model config back to use default NMS.

To check Soft-NMS metrics, just re-compile with mmcv without CP-Cluster modifications.

Reproduce Yolov5

Make sure that the MMCV with CP-Cluster has been successfully installed.

Download code from https://github.com/shenyi0220/yolov5 (Cut down by 11/9/2021 from main branch, replacing the default torchvision.nms with CP-Cluster from mmcv), and install all the dependancies accordingly.

Run below command to reproduce the CP-Cluster exp with yolov5s-v6

python val.py --data coco.yaml --conf 0.001 --iou 0.6 --weights yolov5s.pt --batch-size 32

License

For the time being, this implementation is published with NVIDIA proprietary license, and the only usage of the source code is to reproduce the experiments of CP-Cluster. For any possible commercial use and redistribution of the code, pls contact [email protected]

Citation

If you find this project useful for your research, please use the following BibTeX entry.

Owner
Yichun Shen
Yichun Shen
Hierarchical unsupervised and semi-supervised topic models for sparse count data with CorEx

Anchored CorEx: Hierarchical Topic Modeling with Minimal Domain Knowledge Correlation Explanation (CorEx) is a topic model that yields rich topics tha

Greg Ver Steeg 592 Dec 18, 2022
👑 spaCy building blocks and visualizers for Streamlit apps

spacy-streamlit: spaCy building blocks for Streamlit apps This package contains utilities for visualizing spaCy models and building interactive spaCy-

Explosion 620 Dec 29, 2022
📜 GPT-2 Rhyming Limerick and Haiku models using data augmentation

Well-formed Limericks and Haikus with GPT2 📜 GPT-2 Rhyming Limerick and Haiku models using data augmentation In collaboration with Matthew Korahais &

Bardia Shahrestani 2 May 26, 2022
This Project is based on NLTK It generates a RANDOM WORD from a predefined list of words, From that random word it read out the word, its meaning with parts of speech , its antonyms, its synonyms

This Project is based on NLTK(Natural Language Toolkit) It generates a RANDOM WORD from a predefined list of words, From that random word it read out the word, its meaning with parts of speech , its

SaiVenkatDhulipudi 2 Nov 17, 2021
jiant is an NLP toolkit

🚨 Update 🚨 : As of 2021/10/17, the jiant project is no longer being actively maintained. This means there will be no plans to add new models, tasks,

ML² AT CILVR 1.5k Dec 28, 2022
NLP made easy

GluonNLP: Your Choice of Deep Learning for NLP GluonNLP is a toolkit that helps you solve NLP problems. It provides easy-to-use tools that helps you l

Distributed (Deep) Machine Learning Community 2.5k Jan 04, 2023
Python-zhuyin - An open source Python library that provides a unified interface for converting between Chinese pinyin and Zhuyin (bopomofo)

Python-zhuyin - An open source Python library that provides a unified interface for converting between Chinese pinyin and Zhuyin (bopomofo)

2 Dec 29, 2022
🤗 Transformers: State-of-the-art Machine Learning for Pytorch, TensorFlow, and JAX.

English | 简体中文 | 繁體中文 | 한국어 State-of-the-art Machine Learning for JAX, PyTorch and TensorFlow 🤗 Transformers provides thousands of pretrained models

Hugging Face 77.1k Dec 31, 2022
Repository for Graph2Pix: A Graph-Based Image to Image Translation Framework

Graph2Pix: A Graph-Based Image to Image Translation Framework Installation Install the dependencies in env.yml $ conda env create -f env.yml $ conda a

18 Nov 17, 2022
Journalism AI – Quotes extraction for modular journalism

Quote extraction for modular journalism (JournalismAI collab 2021)

Journalism AI collab 2021 207 Dec 25, 2022
An IVR Chatbot which can exponentially reduce the burden of companies as well as can improve the consumer/end user experience.

IVR-Chatbot Achievements 🏆 Team Uhtred won the Maverick 2.0 Bot-a-thon 2021 organized by AbInbev India. ❓ Problem Statement As we all know that, lot

ARYAMAAN PANDEY 9 Dec 08, 2022
This is a MD5 password/passphrase brute force tool

CROWES-PASS-CRACK-TOOl This is a MD5 password/passphrase brute force tool How to install: Do 'git clone https://github.com/CROW31/CROWES-PASS-CRACK-TO

9 Mar 02, 2022
Silero Models: pre-trained speech-to-text, text-to-speech models and benchmarks made embarrassingly simple

Silero Models: pre-trained speech-to-text, text-to-speech models and benchmarks made embarrassingly simple

Alexander Veysov 3.2k Dec 31, 2022
Creating a Feed of MISP Events from ThreatFox (by abuse.ch)

ThreatFox2Misp Creating a Feed of MISP Events from ThreatFox (by abuse.ch) What will it do? This will fetch IOCs from ThreatFox by Abuse.ch, convert t

17 Nov 22, 2022
A PyTorch implementation of paper "Learning Shared Semantic Space for Speech-to-Text Translation", ACL (Findings) 2021

Chimera: Learning Shared Semantic Space for Speech-to-Text Translation This is a Pytorch implementation for the "Chimera" paper Learning Shared Semant

Chi Han 43 Dec 28, 2022
An official implementation for "CLIP4Clip: An Empirical Study of CLIP for End to End Video Clip Retrieval"

The implementation of paper CLIP4Clip: An Empirical Study of CLIP for End to End Video Clip Retrieval. CLIP4Clip is a video-text retrieval model based

ArrowLuo 456 Jan 06, 2023
Uses Google's gTTS module to easily create robo text readin' on command.

Tool to convert text to speech, creating files for later use. TTRS uses Google's gTTS module to easily create robo text readin' on command.

0 Jun 20, 2021
The implementation of Parameter Differentiation based Multilingual Neural Machine Translation

The implementation of Parameter Differentiation based Multilingual Neural Machine Translation .

Qian Wang 21 Dec 17, 2022