This repository is an implementation of paper : Improving the Training of Graph Neural Networks with Consistency Regularization

Related tags

Deep LearningCRGNN
Overview

CRGNN

Paper : Improving the Training of Graph Neural Networks with Consistency Regularization

Environments

Implementing environment: GeForce RTX™ 3090 24GB (GPU)

Requirements

pytorch>=1.8.1

ogb=1.3.2

numpy=1.21.2

cogdl (latest version)

Training

GAMLP+RLU+SCR

For ogbn-products:

Params: 3335831
python pre_processing.py --num_hops 5 --dataset ogbn-products

python main.py --use-rlu --method R_GAMLP_RLU --stages 400 300 300 300 300 300 --train-num-epochs 0 0 0 0 0 0 --threshold 0.85 --input-drop 0.2 --att-drop 0.5 --label-drop 0 --pre-process --residual --dataset ogbn-products --num-runs 10 --eval 10 --act leaky_relu --batch_size 50000 --patience 300 --n-layers-1 4 --n-layers-2 4 --bns --gama 0.1 --consis --tem 0.5 --lam 0.1 --hidden 512 --ema

GAMLP+MCR

For ogbn-products:

Params: 3335831
python pre_processing.py --num_hops 5 --dataset ogbn-products

python main.py --use-rlu --method R_GAMLP_RLU --stages 800 --train-num-epochs 0 --input-drop 0.2 --att-drop 0.5 --label-drop 0 --pre-process --residual --dataset ogbn-products --num-runs 10 --eval 10 --act leaky_relu --batch_size 100000 --patience 300 --n-layers-1 4 --n-layers-2 4 --bns --gama 0.1 --tem 0.5 --lam 0.5 --ema --mean_teacher --ema_decay 0.999 --lr 0.001 --adap --gap 10 --warm_up 150 --top 0.9 --down 0.8 --kl --kl_lam 0.2 --hidden 512

GIANT-XRT+GAMLP+MCR

Please follow the instruction in GIANT to get the GIANT-XRT node features.

For ogbn-products:

Params: 2144151
python pre_processing.py --num_hops 5 --dataset ogbn-products --giant_path " "

python main.py --use-rlu --method R_GAMLP_RLU --stages 800 --train-num-epochs 0 --input-drop 0.2 --att-drop 0.5 --label-drop 0 --pre-process --residual --dataset ogbn-products --num-runs 10 --eval 10 --act leaky_relu --batch_size 100000 --patience 300 --n-layers-1 4 --n-layers-2 4 --bns --gama 0.1 --tem 0.5 --lam 0.5 --ema --mean_teacher --ema_decay 0.99 --lr 0.001 --adap --gap 10 --warm_up 150 --kl --kl_lam 0.2 --hidden 256 --down 0.7 --top 0.9 --giant

SAGN+MCR

For ogbn-products:

Params: 2179678
python pre_processing.py --num_hops 3 --dataset ogbn-products

python main.py --method SAGN --stages 1000 --train-num-epochs 0 --input-drop 0.2 --att-drop 0.4 --pre-process --residual --dataset ogbn-products --num-runs 10 --eval 10 --batch_size 100000 --patience 300 --tem 0.5 --lam 0.5 --ema --mean_teacher --ema_decay 0.99 --lr 0.001 --adap --gap 20 --warm_up 150 --top 0.85 --down 0.75 --kl --kl_lam 0.01 --hidden 512 --zero-inits --dropout 0.5 --num-heads 1  --label-drop 0.5  --mlp-layer 2 --num_hops 3 --label_num_hops 14

GIANT-XRT+SAGN+MCR

Please follow the instruction in GIANT to get the GIANT-XRT node features.

For ogbn-products:

Params: 1154654
python pre_processing.py --num_hops 3 --dataset ogbn-products --giant_path " "

python main.py --method SAGN --stages 1000 --train-num-epochs 0 --input-drop 0.2 --att-drop 0.4 --pre-process --residual --dataset ogbn-products --num-runs 10 --eval 10 --batch_size 50000 --patience 300 --tem 0.5 --lam 0.5 --ema --mean_teacher --ema_decay 0.99 --lr 0.001 --adap --gap 20 --warm_up 100 --top 0.85 --down 0.75 --kl --kl_lam 0.02 --hidden 256 --zero-inits --dropout 0.5 --num-heads 1  --label-drop 0.5  --mlp-layer 1 --num_hops 3 --label_num_hops 9 --giant

Use Optuna to search for C&S hyperparameters

We searched hyperparameters using Optuna on validation set.

python post_processing.py --file_name --search

GAMLP+RLU+SCR+C&S

python post_processing.py --file_name --correction_alpha 0.4780826957236622 --smoothing_alpha 0.40049734940262954

GIANT-XRT+SAGN+MCR+C&S

python post_processing.py --file_name --correction_alpha 0.42299283241438157 --smoothing_alpha 0.4294212449832242

Node Classification Results:

Performance on ogbn-products(10 runs):

Methods Validation accuracy Test accuracy
SAGN+MCR 0.9325±0.0004 0.8441±0.0005
GAMLP+MCR 0.9319±0.0003 0.8462±0.0003
GAMLP+RLU+SCR 0.9292±0.0005 0.8505±0.0009
GAMLP+RLU+SCR+C&S 0.9304±0.0005 0.8520±0.0008
GIANT-XRT+GAMLP+MCR 0.9402±0.0004 0.8591±0.0008
GIANT-XRT+SAGN+MCR 0.9389±0.0002 0.8651±0.0009
GIANT-XRT+SAGN+MCR+C&S 0.9387±0.0002 0.8673±0.0008

Citation

Our paper:

@misc{zhang2021improving,
      title={Improving the Training of Graph Neural Networks with Consistency Regularization}, 
      author={Chenhui Zhang and Yufei He and Yukuo Cen and Zhenyu Hou and Jie Tang},
      year={2021},
      eprint={2112.04319},
      archivePrefix={arXiv},
      primaryClass={cs.SI}
}

GIANT paper:

@article{chien2021node,
  title={Node Feature Extraction by Self-Supervised Multi-scale Neighborhood Prediction},
  author={Eli Chien and Wei-Cheng Chang and Cho-Jui Hsieh and Hsiang-Fu Yu and Jiong Zhang and Olgica Milenkovic and Inderjit S Dhillon},
  journal={arXiv preprint arXiv:2111.00064},
  year={2021}
}

GAMLP paper:

@article{zhang2021graph,
  title={Graph attention multi-layer perceptron},
  author={Zhang, Wentao and Yin, Ziqi and Sheng, Zeang and Ouyang, Wen and Li, Xiaosen and Tao, Yangyu and Yang, Zhi and Cui, Bin},
  journal={arXiv preprint arXiv:2108.10097},
  year={2021}
}

SAGN paper:

@article{sun2021scalable,
  title={Scalable and Adaptive Graph Neural Networks with Self-Label-Enhanced training},
  author={Sun, Chuxiong and Wu, Guoshi},
  journal={arXiv preprint arXiv:2104.09376},
  year={2021}
}

C&S paper:

@inproceedings{
huang2021combining,
title={Combining Label Propagation and Simple Models out-performs Graph Neural Networks},
author={Qian Huang and Horace He and Abhay Singh and Ser-Nam Lim and Austin Benson},
booktitle={International Conference on Learning Representations},
year={2021},
url={https://openreview.net/forum?id=8E1-f3VhX1o}
}
Owner
THUDM
Data Mining Research Group at Tsinghua University
THUDM
PyTorch implementation of paper "StarEnhancer: Learning Real-Time and Style-Aware Image Enhancement" (ICCV 2021 Oral)

StarEnhancer StarEnhancer: Learning Real-Time and Style-Aware Image Enhancement (ICCV 2021 Oral) Abstract: Image enhancement is a subjective process w

IDKiro 133 Dec 28, 2022
Rohit Ingole 2 Mar 24, 2022
This is the code for HOI Transformer

HOI Transformer Code for CVPR 2021 accepted paper End-to-End Human Object Interaction Detection with HOI Transformer. Reproduction We recomend you to

BigBangEpoch 124 Dec 29, 2022
[ICLR 2021] Rank the Episodes: A Simple Approach for Exploration in Procedurally-Generated Environments.

[ICLR 2021] RAPID: A Simple Approach for Exploration in Reinforcement Learning This is the Tensorflow implementation of ICLR 2021 paper Rank the Episo

Daochen Zha 48 Nov 21, 2022
Testability-Aware Low Power Controller Design with Evolutionary Learning, ITC2021

Testability-Aware Low Power Controller Design with Evolutionary Learning This repo contains the source code of Testability-Aware Low Power Controller

Lee Man 1 Dec 26, 2021
The Official PyTorch Implementation of "LSGM: Score-based Generative Modeling in Latent Space" (NeurIPS 2021)

The Official PyTorch Implementation of "LSGM: Score-based Generative Modeling in Latent Space" (NeurIPS 2021) Arash Vahdat*   ·   Karsten Kreis*   ·  

NVIDIA Research Projects 238 Jan 02, 2023
Quantized tflite models for ailia TFLite Runtime

ailia-models-tflite Quantized tflite models for ailia TFLite Runtime About ailia TFLite Runtime ailia TF Lite Runtime is a TensorFlow Lite compatible

ax Inc. 13 Dec 23, 2022
The Empirical Investigation of Representation Learning for Imitation (EIRLI)

The Empirical Investigation of Representation Learning for Imitation (EIRLI)

Center for Human-Compatible AI 31 Nov 06, 2022
Rocket-recycling with Reinforcement Learning

Rocket-recycling with Reinforcement Learning Developed by: Zhengxia Zou I have long been fascinated by the recovery process of SpaceX rockets. In this

Zhengxia Zou 202 Jan 03, 2023
Code for "Unsupervised State Representation Learning in Atari"

Unsupervised State Representation Learning in Atari Ankesh Anand*, Evan Racah*, Sherjil Ozair*, Yoshua Bengio, Marc-Alexandre Côté, R Devon Hjelm This

Mila 217 Jan 03, 2023
DTCN SMP Challenge - Sequential prediction learning framework and algorithm

DTCN This is the implementation of our paper "Sequential Prediction of Social Me

Bobby 2 Jan 24, 2022
A variational Bayesian method for similarity learning in non-rigid image registration (CVPR 2022)

A variational Bayesian method for similarity learning in non-rigid image registration We provide the source code and the trained models used in the re

daniel grzech 14 Nov 21, 2022
DPT: Deformable Patch-based Transformer for Visual Recognition (ACM MM2021)

DPT This repo is the official implementation of DPT: Deformable Patch-based Transformer for Visual Recognition (ACM MM2021). We provide code and model

CASIA-IVA-Lab 111 Dec 21, 2022
Python scripts for performing road segemtnation and car detection using the HybridNets multitask model in ONNX.

ONNX-HybridNets-Multitask-Road-Detection Python scripts for performing road segemtnation and car detection using the HybridNets multitask model in ONN

Ibai Gorordo 45 Jan 01, 2023
A deep neural networks for images using CNN algorithm.

Example-CNN-Project This is a simple project showing how to implement deep neural networks using CNN algorithm. The dataset is taken from this link: h

Mohammad Amin Dadgar 3 Sep 16, 2022
Novel and high-performance medical image classification pipelines are heavily utilizing ensemble learning strategies

An Analysis on Ensemble Learning optimized Medical Image Classification with Deep Convolutional Neural Networks Novel and high-performance medical ima

14 Dec 18, 2022
Classifying cat and dog images using Kaggle dataset

PyTorch Image Classification Classifies an image as containing either a dog or a cat (using Kaggle's public dataset), but could easily be extended to

Robert Coleman 74 Nov 22, 2022
Tutorials, assignments, and competitions for MIT Deep Learning related courses.

MIT Deep Learning This repository is a collection of tutorials for MIT Deep Learning courses. More added as courses progress. Tutorial: Deep Learning

Lex Fridman 9.5k Jan 07, 2023
A real-time speech emotion recognition application using Scikit-learn and gradio

Speech-Emotion-Recognition-App A real-time speech emotion recognition application using Scikit-learn and gradio. Requirements librosa==0.6.3 numpy sou

Son Tran 6 Oct 04, 2022
UnpNet - Rethinking 3-D LiDAR Point Cloud Segmentation(IEEE TNNLS)

UnpNet Citation Please cite the following paper if you use this repository in your reseach. @article {PMID:34914599, Title = {Rethinking 3-D LiDAR Po

Shijie Li 4 Jul 15, 2022