Weakly Supervised Text-to-SQL Parsing through Question Decomposition

Overview

Weakly Supervised Text-to-SQL Parsing through Question Decomposition

The official repository for the paper "Weakly Supervised Text-to-SQL Parsing through Question Decomposition" by Tomer Wolfson, Daniel Deutch and Jonathan Berant, accepted to the Finings of NAACL 2022.

This repository contains the code and data used in our paper:

  1. Code for automatically synthesizing SQL queries from question decompositions + answers
  2. Code for the models used in our paper mapping text-to-SQL and text-to-QDMR

Setup πŸ™ŒπŸΌ

  1. Create the virtual environment
conda create -n [ENV_NAME] python=3.8
conda activate [ENV_NAME]
  1. Clone the repository
git clone https://github.com/tomerwolgithub/question-decomposition-to-sql
cd question-decomposition-to-sql
  1. Install the relevant requirements
pip install -r requirements.txt 
python -m spacy download en_core_web_lg
  1. To train the QDMR parser model please setup a separate environment (due to different Hugginface versions):
conda create -n qdmr_parser_env python=3.8
conda activate qdmr_parser_env
pip install -r requirements_qdmr_parser.txt 
python -m spacy download en_core_web_lg

Download Resources πŸ—οΈ

1. QDMR Parsing Datasets:

2. Text-to-SQL Datasets:

3. Databases (schema & contents):

Convert the MySQL databases of Academic, IMDB, Yelp and GeoQuery to sqlite format using the tool of Jean-Luc Lacroix:

./mysql2sqlite academic_mysql.sql | sqlite3 academic_sqlite.db

Data Generation πŸ”¨

Our SQL synthesis is given examples of <QDMR, database, answer> and automatically generates a SQL that executes to the correct answer. The QDMR decompositions are either manually annotated or automatically predicted by a trained QDMR parser.

Begin by copying all relevant sqlite databases to the data_generation directory.

mkdir data_generation/data
mkdir data_generation/data/spider_databases # copy Spider databases here
mkdir data_generation/data/other_databases # copy Academic, IMDB, Yelp and Geo databases here
  1. The SQL synthesis expects a formatted csv file, see example. Note that the SQL query in these files is only used to compute the answer.
  2. This may take several hours, as multiple candidate SQL are being executed on their respective database.
  3. To synthesize SQL from the <QDMR, database, answer> examples run:
python data_generation/main.py \
--input_file input_qdmr_examples.csv \
--output_file qdmr_grounded_sql.csv \
--json_steps True

Synthesized Data

The SQL synthesized using QDMR + answer supervision is available for each dataset in the data/sql_synthesis_results/ directory.

  • data/sql_synthesis_results/gold_qdmr_supervision: contains SQL synthesized using gold QDMRs that are manually annotated
  • data/sql_synthesis_results/predicted_qdmr_supervision: contains SQL synthesized using QDMRs predicted by a trained parser

Models πŸ—‚οΈ

QDMR Parser

The QDMR parser is a T5-large sequence-to-sequence model that is finetuned to map questions to their QDMR. The model expects as input two csv files as its train and dev sets. Use the files from the downloaded Break dataset to train the parser. Make sure that you are in the relevant python environment (requirements_qdmr_parser.txt).

To train the QDMR parser configure the following parameters in train.py:

  • data_dir: the path to the directory containing the NL to QDMR datasets
  • training_set_file: name of the train set csv (e.g. break_train.csv)
  • dev_set_file: name of the dev set csv (e.g. break_dev.csv)
  • output_dir: the directory to store the trained model

After configuration, train the model as follows:

TOKENIZERS_PARALLELISM=false CUDA_VISIBLE_DEVICES=0 python src/qdmr_parser/train.py

To test a trained model and store its predictions, configure the following parameters in test.py:

  • checkpoint_path: path to the trained QDMR parser model to be evaluated
  • dev_set_file: name of the dev set csv to generate predictions for
  • predictions_output_file: the output file to store the parser's generated predictions

And run the following command:

TOKENIZERS_PARALLELISM=false CUDA_VISIBLE_DEVICES=0 python src/qdmr_parser/test.py

Text-to-SQL

The text-to-SQL models are T5-large sequence-to-sequence models, finetuned to map questions to executable SQL queries. We compare the models trained on gold SQL queries, annotated by experts, to our synthesized SQL from QDMR and answer supervision.

1. Setup directory

Setup the data for the text-to-SQL experiments as follows:

data
β”œβ”€β”€ tables.json			# Spider tables.json
└── databases
β”‚   └── academic			
β”‚       └── academic.sqlite	# Sqlite version of the populated Academic database (see downloads)
β”‚   └── geo			
β”‚       └── geo.sqlite		# Sqlite version of the populated Geo database (see downloads)
β”‚   └── imdb			
β”‚       └── imdb.sqlite		# Sqlite version of the populated IMDB database (see downloads)
β”‚   └── spider_databases 	# Spider databases directory
β”‚       └── activity_1
β”‚           └── activity_1.sqlite
β”‚       └── ...   
β”‚   └── yelp			
β”‚       └── yelp.sqlite		# Sqlite version of the populated Yelp database (see downloads)
└── queries
    └── geo	# See experiments data
        β”œβ”€β”€ geo_qdmr_train.json
	└── geo_qdmr_predicted_train.json
	└── geo_gold_train.json
	└── geo_gold_dev.json
	└── geo_gold_test.json
	└── geo_gold_train.sql
	└── geo_gold_dev.sql
	└── geo_gold_test.sql
    └── spider
        β”œβ”€β”€ spider_qdmr_train.json		# See experiments data
	└── spider_qdmr_predicted_train.json 	# See experiments data
	└── spider_gold_train.json 	# Spider training set
	└── spider_gold_dev.json 	# Spider dev set
	└── spider_gold_train.sql 	# Spider training set SQL queries
	└── spider_gold_dev.sql 	# Spider dev set SQL queries

Database files are described in the downloads section. See the experiments section for the exact train and test files.

2. Train model

To train the text-to-SQL model configure its following parameters in train.py:

  • dataset: either spider or geo
  • target_encoding: sql for gold sql and either qdmr_formula or qdmr_sql for the QDMR experiments
  • data_dir: path to the directory containing the experiments data
  • output_dir: the directory to store the trained model
  • db_dir: the directory to store the trained model
  • training_set_file: training set file in the data directory e.g. spider/spider_gold_train.json
  • dev_set_file: dev set file in the data directory e.g. spider/spider_gold_dev.json
  • dev_set_sql: dev set SQL queries in the data directory e.g. spider/spider_gold_dev.sql

Following configuration, to train the model run:

CUDA_VISIBLE_DEVICES=0 python train.py 

3. Test model

To test the text-to-SQL model first configure the relevant parameters and checkpoint_path in test.py. Following the configuration, generate the trained model predictions using:

CUDA_VISIBLE_DEVICES=0 python test.py 

Experiments βš—οΈ

Data

Gold SQL:

For the Spider experiments we use its original train and dev json and sql files. For Geo880, Academic, IMDB and Yelp we format the original datasets in json files available here.

QDMR Synthesized SQL:

The QDMR text-to-SQL models are not trained directly on the synthesized SQL. Instead, we train on an encoded QDMR representation with its phrase-DB linking (from the SQL synthesis). This representation is automatically mapped to SQL to evaluate the models execution accuracy. To generate these grounded QDMRs we use the output of the data generation phase. The function encoded_grounded_qdmr in src/data_generation/write_encoding.py recieves the json file containing the synthesized SQL examples. It then encodes them as lisp style formulas of QDMR steps and their relevant phrase-DB linking.

For convenience, you can download the encoded QDMR training sets used in our experiments here. These include:

  • qdmr_ground_enc_spider_train.json: 5,349 examples, synthesized using gold QDMR + answer supervision
  • qdmr_ground_enc_predicted_spider_train_few_shot: 5,075 examples, synthesized examples using 700 gold QDMRs, predicted QDMR + answer supervision
  • qdmr_ground_enc_predicted_spider_train_30_db.json: 1,129 examples, synthesized using predicted QDMR + answer supervision
  • qdmr_ground_enc_predicted_spider_train_40_db.json: 1,440 examples, synthesized using predicted QDMR + answer supervision
  • qdmr_ground_enc_predicted_spider_train_40_db_V2.json: 1,552 examples, synthesized using predicted QDMR + answer supervision
  • qdmr_ground_enc_geo880_train.json: 454 examples, synthesized using gold QDMR + answer supervision
  • qdmr_ground_enc_predicted_geo_train_zero_shot.json: 432 examples, synthesized using predicted QDMR + answer supervision

Configurations

The configurations for training the text-to-SQL models on Spider. Other parameters are fixed in train.py.

SQL Gold (Spider):

{'dataset': 'spider',
'target_encoding': 'sql',
'db_dir': 'databases/spider_databases',
'training_set_file': 'queries/spider/spider_gold_train.json',
'dev_set_file': 'queries/spider/spider_gold_dev.json',
'dev_set_sql': 'queries/spider/spider_gold_dev.sql'}

QDMR Gold (Spider):

{'dataset': 'spider',
'target_encoding': 'qdmr_formula',
'db_dir': 'databases/spider_databases',
'training_set_file': 'queries/spider/spider_qdmr_train.json',
'dev_set_file': 'queries/spider/spider_gold_dev.json',
'dev_set_sql': 'queries/spider/spider_gold_dev.sql'}

SQL Predicted (Spider):

{'dataset': 'spider',
'target_encoding': 'qdmr_formula',
'db_dir': `databases/spider_databases',
'training_set_file': 'queries/spider/spider_qdmr_predicted_train.json',
'dev_set_file': 'queries/spider/spider_gold_dev.json',
'dev_set_sql': 'queries/spider/spider_gold_dev.sql'}

The configurations for training the text-to-SQL models on Geo880.

SQL Gold (Geo):

{'dataset': 'geo',
'target_encoding': 'sql',
'db_dir': 'databases',
'training_set_file': 'queries/geo/geo_gold_train.json',
'dev_set_file': 'queries/spider/geo_gold_dev.json',
'dev_set_sql': 'queries/spider/geo_gold_dev.sql'}

QDMR Gold (Geo):

{'dataset': 'geo',
'target_encoding': 'qdmr_sql',
'db_dir': 'databases',
'training_set_file': 'queries/geo/geo_qdmr_train.json',
'dev_set_file': 'queries/spider/geo_gold_dev.json',
'dev_set_sql': 'queries/spider/geo_gold_dev.sql'}

QDMR Predicted (Geo):

{'dataset': 'geo',
'target_encoding': 'qdmr_sql',
'db_dir': 'databases',
'training_set_file': 'queries/geo/geo_qdmr_predicted_train.json',
'dev_set_file': 'queries/spider/geo_gold_dev.json',
'dev_set_sql': 'queries/spider/geo_gold_dev.sql'}

Evaluation

Text-to-SQL model performance is evaluated using SQL execution accuracy in src/text_to_sql/eval_spider.py. The script automatically converts encoded QDMR predictions to SQL before executing them on the target database.

Citation ✍🏽

bibtex
@inproceedings{wolfson-etal-2022-weakly,
    title={"Weakly Supervised Text-to-SQL Parsing through Question Decomposition"},
    author={"Wolfson, Tomer and Deutch, Daniel and Berant, Jonathan"},
    booktitle = {"Findings of the Association for Computational Linguistics: NAACL 2022"},
    year={"2022"},
}

License

This repository and its data is released under the MIT license.

For the licensing of all external datasets and databases used throughout our experiments:

PyTorch ,ONNX and TensorRT implementation of YOLOv4

PyTorch ,ONNX and TensorRT implementation of YOLOv4

4.2k Jan 01, 2023
An Unsupervised Detection Framework for Chinese Jargons in the Darknet

An Unsupervised Detection Framework for Chinese Jargons in the Darknet This repo is the Python 3 implementation of γ€ŠAn Unsupervised Detection Framewor

7 Nov 08, 2022
Theory-inspired Parameter Control Benchmarks for Dynamic Algorithm Configuration

This repo is for the paper: Theory-inspired Parameter Control Benchmarks for Dynamic Algorithm Configuration The DAC environment is based on the Dynam

Carola Doerr 1 Aug 19, 2022
Code for ECIR'20 paper Diagnosing BERT with Retrieval Heuristics

Bert Axioms This is the repository with the code for the Paper Diagnosing BERT with Retrieval Heuristics Required Data In order to run this code, you

Arthur CΓ’mara 5 Jan 21, 2022
Devkit for 3D -- Some utils for 3D object detection based on Numpy and Pytorch

D3D Devkit for 3D: Some utils for 3D object detection and tracking based on Numpy and Pytorch Please consider siting my work if you find this library

Jacob Zhong 27 Jul 07, 2022
[CVPR 2021] MetaSAug: Meta Semantic Augmentation for Long-Tailed Visual Recognition

MetaSAug: Meta Semantic Augmentation for Long-Tailed Visual Recognition (CVPR 2021) arXiv Prerequisite PyTorch = 1.2.0 Python3 torchvision PIL argpar

51 Nov 11, 2022
A library for preparing, training, and evaluating scalable deep learning hybrid recommender systems using PyTorch.

collie Collie is a library for preparing, training, and evaluating implicit deep learning hybrid recommender systems, named after the Border Collie do

ShopRunner 96 Dec 29, 2022
Deep deconfounded recommender (Deep-Deconf) for paper "Deep causal reasoning for recommendations"

Deep Causal Reasoning for Recommender Systems The codes are associated with the following paper: Deep Causal Reasoning for Recommendations, Yaochen Zh

Yaochen Zhu 22 Oct 15, 2022
a reimplementation of UnFlow in PyTorch that matches the official TensorFlow version

pytorch-unflow This is a personal reimplementation of UnFlow [1] using PyTorch. Should you be making use of this work, please cite the paper according

Simon Niklaus 134 Nov 20, 2022
Offical implementation of Shunted Self-Attention via Multi-Scale Token Aggregation

Shunted Transformer This is the offical implementation of Shunted Self-Attention via Multi-Scale Token Aggregation by Sucheng Ren, Daquan Zhou, Shengf

156 Dec 27, 2022
Source codes for "Structure-Aware Abstractive Conversation Summarization via Discourse and Action Graphs"

Structure-Aware-BART This repo contains codes for the following paper: Jiaao Chen, Diyi Yang:Structure-Aware Abstractive Conversation Summarization vi

GT-SALT 56 Dec 08, 2022
Wide Residual Networks (WideResNets) in PyTorch

Wide Residual Networks (WideResNets) in PyTorch WideResNets for CIFAR10/100 implemented in PyTorch. This implementation requires less GPU memory than

Jason Kuen 296 Dec 27, 2022
Accurate Phylogenetic Inference with Symmetry-Preserving Neural Networks

Accurate Phylogenetic Inference with a Symmetry-preserving Neural Network Model Claudia Solis-Lemus Shengwen Yang Leonardo Zepeda-NΓΊΓ±ez This repositor

Leonardo Zepeda-NΓΊΓ±ez 2 Feb 11, 2022
πŸ”₯ Real-time Super Resolution enhancement (4x) with content loss and relativistic adversarial optimization πŸ”₯

πŸ”₯ Real-time Super Resolution enhancement (4x) with content loss and relativistic adversarial optimization πŸ”₯

Rishik Mourya 48 Dec 20, 2022
MDETR: Modulated Detection for End-to-End Multi-Modal Understanding

MDETR: Modulated Detection for End-to-End Multi-Modal Understanding Website β€’ Colab β€’ Paper This repository contains code and links to pre-trained mod

Aishwarya Kamath 770 Dec 28, 2022
Repository for RNNs using TensorFlow and Keras - LSTM and GRU Implementation from Scratch - Simple Classification and Regression Problem using RNNs

RNN 01- RNN_Classification Simple RNN training for classification task of 3 signal: Sine, Square, Triangle. 02- RNN_Regression Simple RNN training for

Nahid Ebrahimian 13 Dec 13, 2022
Implementation of Vaswani, Ashish, et al. "Attention is all you need."

Attention Is All You Need Paper Implementation This is my from-scratch implementation of the original transformer architecture from the following pape

Brando Koch 195 Dec 30, 2022
Continual Learning of Long Topic Sequences in Neural Information Retrieval

ContinualPassageRanking Repository for the paper "Continual Learning of Long Topic Sequences in Neural Information Retrieval". In this repository you

0 Apr 12, 2022
Tensorflow Implementation of the paper "Spectral Normalization for Generative Adversarial Networks" (ICML 2017 workshop)

tf-SNDCGAN Tensorflow implementation of the paper "Spectral Normalization for Generative Adversarial Networks" (https://www.researchgate.net/publicati

Nhat M. Nguyen 248 Nov 25, 2022
Repository for the AugmentedPCA Python package.

Overview This Python package provides implementations of Augmented Principal Component Analysis (AugmentedPCA) - a family of linear factor models that

Billy Carson 6 Dec 07, 2022