Pytorch Geometric Tutorials

Overview

PytorchGeometricTutorial

Hi! We are Antonio Longa and Giovanni Pellegrini, PhD students, and PhD Gabriele Santin, researcher, working between Fondazione Bruno Kessler and the University of Trento, Italy.

This project aims to present through a series of tutorials various techniques in the field of Geometric Deep Learning, focusing on how they work and how to implement them using the Pytorch geometric library, an extension to Pytorch to deal with graphs and structured data, developed by @rusty1s.

You can find our video tutorials on Youtube and at our official website here.

Feel free to join our weekly online tutorial! For more details, have a look at the official website.

Tutorials:

Installation of PyG:

In order to have running notebooks in Colab, we use the following installation commands:

!pip install torch-scatter -f https://data.pyg.org/whl/torch-1.9.0+cu111.html
!pip install torch-sparse -f https://data.pyg.org/whl/torch-1.9.0+cu111.html
!pip install torch-geometric

These version are tested and running in Colab. If instead you run the notebooks on your machine, have a look at the PyG's installation instructions to find suitable versions.

Comments
  • DiffPool tutorial does not work

    DiffPool tutorial does not work

    Thank you for making the videos and notebooks available! They are very nice and helpful. I saw that the DiffPool model still does not work for the version that is uploaded here. I was wondering if you already have the working model available?

    Thank you in advance!

    opened by lisiq 4
  • Some tutorials no longer work with Google Colab

    Some tutorials no longer work with Google Colab

    Tutorial 14 and 15 both no longer work with colab and give this error after the second cell


    OSError Traceback (most recent call last) in () 2 import os 3 import pandas as pd ----> 4 from torch_geometric.data import InMemoryDataset, Data, download_url, extract_zip 5 from torch_geometric.utils.convert import to_networkx 6 import networkx as nx

    6 frames /usr/lib/python3.7/ctypes/init.py in init(self, name, mode, handle, use_errno, use_last_error) 362 363 if handle is None: --> 364 self._handle = _dlopen(self._name, mode) 365 else: 366 self._handle = handle

    OSError: /usr/local/lib/python3.7/dist-packages/torch_sparse/_convert_cpu.so: undefined symbol: _ZNK2at6Tensor5zero_Ev

    opened by itamblyn 2
  • Modify the example1

    Modify the example1

    https://github.com/AntonioLonga/PytorchGeometricTutorial/blob/main/Tutorial1/Tutorial1.ipynb

    I think this example could be modified for the better. In fact, the nums_layer = 1 parameter should be defined in Net, and a layer of GNNStack should be defined according to this parameter in the forward method. This would solve the problem raised by YouTube video 43:29.

    opened by abcdabcd989 2
  • Tutorial 3 code

    Tutorial 3 code

    Hi,

    Thanks for this great tutorials and videos. Really nice work.

    I was wondering about the GATLayer class in the code of tutorial 3. Once the class is made, it is no longer used after the 'Use it' heading in the notebook. Instead, the GATConv from torch geometric is used directly. Then why was the GATLayer class made?

    Thanks, VR

    opened by vandana-rajan 1
  • Error for running

    Error for running "from torch_geometric.nn import Node2Vec"

    while running from torch_geometric.nn import Node2Vec in google colab an error occur OSError: /usr/local/lib/python3.7/dist-packages/torch_sparse/_convert_cpu.so: undefined symbol: _ZNK2at6Tensor5zero_Ev

    what should I do?

    opened by ayreen2 1
  • Adding Colab support for the tutorials

    Adding Colab support for the tutorials

    Thanks for your effort and great work!

    I think, In order to make the tutorials more convenient for a wide audience it would be helpful to add a colab version of the notebooks with the special button, that redirects to the http://colab.research.google.com/.

    All tutorials can be run in colab via adding the notebook from GitHub and adding the cell with the installation of the pytorch-geometric and all dependencies. But the version with native support would make it more convenient.

    opened by Godofnothing 1
  • Question about Tutorial16.ipynb

    Question about Tutorial16.ipynb

    Hello, Thank you for the nice tutorial, it helps a lot to get started! I have a few questions concerning Tutorial16.ipynb: 1/ what is the effect of the parameter lin=True? 2/ what's the effect of changing the number of hidden and output channels? 3/ what is the purpose of l1, e1, l2, e2? Best, Claire

    opened by claireguepin 0
  • Some questions I found in this tutorial

    Some questions I found in this tutorial

    Hi, this is a nice tutorial. However, I find that there are some minor problems with the materials.

    1. I fond that they are same links so I think you can delete one. image
    2. In the node2vec practice colab notebook, the current installation requirement will lead the colab environment to break down. I tried this combination and it works: image Could you please figure out why? Thanks a lot!
    opened by HelloWorldLTY 0
Releases(v1.0.0)
Owner
Antonio Longa
Antonio Longa
KIDA: Knowledge Inheritance in Data Aggregation

KIDA: Knowledge Inheritance in Data Aggregation This project releases our 1st place solution on NeurIPS2021 ML4CO Dual Task. Slide and model weights a

24 Sep 08, 2022
A Context-aware Visual Attention-based training pipeline for Object Detection from a Webpage screenshot!

CoVA: Context-aware Visual Attention for Webpage Information Extraction Abstract Webpage information extraction (WIE) is an important step to create k

Keval Morabia 41 Jan 01, 2023
PyTorch implementation of "Efficient Neural Architecture Search via Parameters Sharing"

Efficient Neural Architecture Search (ENAS) in PyTorch PyTorch implementation of Efficient Neural Architecture Search via Parameters Sharing. ENAS red

Taehoon Kim 2.6k Dec 31, 2022
Official code for: A Probabilistic Hard Attention Model For Sequentially Observed Scenes

"A Probabilistic Hard Attention Model For Sequentially Observed Scenes" Authors: Samrudhdhi Rangrej, James Clark Accepted to: BMVC'21 A recurrent atte

5 Nov 19, 2022
Faster Convex Lipschitz Regression

Faster Convex Lipschitz Regression This reepository provides a python implementation of our Faster Convex Lipschitz Regression algorithm with GPU and

Ali Siahkamari 0 Nov 19, 2021
code for our paper "Source Data-absent Unsupervised Domain Adaptation through Hypothesis Transfer and Labeling Transfer"

SHOT++ Code for our TPAMI submission "Source Data-absent Unsupervised Domain Adaptation through Hypothesis Transfer and Labeling Transfer" that is ext

75 Dec 16, 2022
A curated list of awesome Active Learning

Awesome Active Learning 🤩 A curated list of awesome Active Learning ! 🤩 Background (image source: Settles, Burr) What is Active Learning? Active lea

BAI Fan 431 Jan 03, 2023
A collection of 100 Deep Learning images and visualizations

A collection of Deep Learning images and visualizations. The project has been developed by the AI Summer team and currently contains almost 100 images.

AI Summer 65 Sep 12, 2022
Wandb-predictions - WANDB Predictions With Python

WANDB API CI/CD Below we capture the CI/CD scenarios that we would expect with o

Anish Shah 6 Oct 07, 2022
[NeurIPS 2021] Garment4D: Garment Reconstruction from Point Cloud Sequences

Garment4D [PDF] | [OpenReview] | [Project Page] Overview This is the codebase for our NeurIPS 2021 paper Garment4D: Garment Reconstruction from Point

Fangzhou Hong 112 Dec 23, 2022
Residual Dense Net De-Interlace Filter (RDNDIF)

Residual Dense Net De-Interlace Filter (RDNDIF) Work in progress deep de-interlacer filter. It is based on the architecture proposed by Bernasconi et

Louis 7 Feb 15, 2022
Multi-Task Learning as a Bargaining Game

Nash-MTL Official implementation of "Multi-Task Learning as a Bargaining Game". Setup environment conda create -n nashmtl python=3.9.7 conda activate

Aviv Navon 87 Dec 26, 2022
Spatial Transformer Nets in TensorFlow/ TensorLayer

MOVED TO HERE Spatial Transformer Networks Spatial Transformer Networks (STN) is a dynamic mechanism that produces transformations of input images (or

Hao 36 Nov 23, 2022
ICRA 2021 - Robust Place Recognition using an Imaging Lidar

Robust Place Recognition using an Imaging Lidar A place recognition package using high-resolution imaging lidar. For best performance, a lidar equippe

Tixiao Shan 293 Dec 27, 2022
[NeurIPS-2021] Slow Learning and Fast Inference: Efficient Graph Similarity Computation via Knowledge Distillation

Efficient Graph Similarity Computation - (EGSC) This repo contains the source code and dataset for our paper: Slow Learning and Fast Inference: Effici

24 Dec 31, 2022
My freqtrade strategies

My freqtrade-strategies Hi there! This is repo for my freqtrade-strategies. My name is Ilya Zelenchuk, I'm a lecturer at the SPbU university (https://

171 Dec 05, 2022
Source code for the paper "PLOME: Pre-training with Misspelled Knowledge for Chinese Spelling Correction" in ACL2021

PLOME:Pre-training with Misspelled Knowledge for Chinese Spelling Correction (ACL2021) This repository provides the code and data of the work in ACL20

197 Nov 26, 2022
The source code of the paper "Understanding Graph Neural Networks from Graph Signal Denoising Perspectives"

GSDN-F and GSDN-EF This repository provides a reference implementation of GSDN-F and GSDN-EF as described in the paper "Understanding Graph Neural Net

Guoji Fu 18 Nov 14, 2022
The code for paper "Learning Implicit Fields for Generative Shape Modeling".

implicit-decoder The tensorflow code for paper "Learning Implicit Fields for Generative Shape Modeling", Zhiqin Chen, Hao (Richard) Zhang. Project pag

Zhiqin Chen 353 Dec 30, 2022
A Transformer-Based Feature Segmentation and Region Alignment Method For UAV-View Geo-Localization

University1652-Baseline [Paper] [Slide] [Explore Drone-view Data] [Explore Satellite-view Data] [Explore Street-view Data] [Video Sample] [中文介绍] This

Zhedong Zheng 335 Jan 06, 2023