Analyze, visualize and process sound field data recorded by spherical microphone arrays.

Overview

Sound Field Analysis toolbox for Python

Mentioned in Awesome Python for Scientific Audio icon_travis icon_appveyor

The sound_field_analysis toolbox (short: sfa) is a Python port of the Sound Field Analysis Toolbox (SOFiA) toolbox, originally by Benjamin Bernschütz [1]. The main goal of the sfa toolbox is to analyze, visualize and process sound field data recorded by spherical microphone arrays. Furthermore, various types of test-data may be generated to evaluate the implemented functions. It is an essential building block of ReTiSAR, an implementation of real time binaural rendering of spherical microphone array data.

Requirements

We use Python 3.9 for development. Chances are that earlier version will work too but this is currently untested.

The following external libraries are required:

Installation

For performance and convenience reasons we highly recommend to use Conda (miniconda for simplicity) to manage your Python installation. Once installed, you can use the following steps to receive and use sfa, depending on your use case:

  • From PyPI / pip:

    Install into an existing environment (without example Jupyter Notebooks):
    pip install sound_field_analysis
  • By cloning (or downloading) the repository and setting up a new environment:

    git clone https://github.com/AppliedAcousticsChalmers/sound_field_analysis-py.git
    cd sound_field_analysis-py/
    Create a new Conda environment from the specified dependencies:
    conda env create --file environment.yml --force
    Activate the environment:
    source activate sfa
    Optional: Install additional dependencies for development purposes (locally run Jupyter Notebooks with example, run tests, generate documentation):
    conda env update --file environment_dev.yml

Documentation

https://appliedacousticschalmers.github.io/sound_field_analysis-py/ and offline as PDF.

Note: Verify the version number of the documentation to see if it reflects the latest changes.

Examples

The following examples are available as Jupyter Notebooks, either statically on GitHub or interactively on nbviewer. You can of course also simply download the examples and run them locally!

Exp1: Ideal plane wave

Ideal unity plane wave simulation and 3D plot.

View interactively on nbviewer

AE1_img

Exp2: Measured plane wave

A measured plane wave from AZ=180°, EL=90° in the anechoic chamber using a cardioid mic.

View interactively on nbviewer

AE2_img

Exp4: Binaural rendering

Render a spherical microphone array impulse response measurement binaurally. The example shows examples for loading miro or SOFA files.

View interactively on nbviewer

AE4_img

Version history

unreleased
  • Update miro_to_struct() to work in modern Matlab versions
  • Update MIRO struct loading for SphericalGrid (forgiving empty radius and quadrature weights)
  • Add optional automatic limitation of y-axis range in plot2D()
  • Implement frac_oct_smooth_fd() with fractional octave smoothing of magnitude spectra
  • Add option for fractional octave smoothing of magnitude spectra to plot2D()
  • Fix Exp4 to replace removed deg2rad and rad2deg utility functions
v2021.2.4
  • Implement option to use real spherical harmonic basis functions
  • Update Exp4 to optionally utilize real spherical harmonics
  • Fix testing of spherical harmonics against reference Matlab implementation
  • Add testing for generation of real spherical harmonics
  • Add evaluation of performance for generation of complex and real spherical harmonics
  • Add evaluation of performance for spatial sound field decomposition
  • Remove deg2rad and rad2deg utility functions (replaced by NumPy equivalent)
  • Update Conda environment setup to combine all development dependencies
  • Update online and offline documentation
v2021.1.12
  • Update MIRO struct loading for SphericalGrid (quadrature weights are now optional)
  • Fix to prevent Python 3.8 syntax warnings
  • Improve Exp4 (general code structure and utilizing Spherical Head Filter and Spherical Harmonics Tapering)
v2020.1.30
  • Update README and PyPI package
v2019.11.6
  • Update internal documentation and string formatting
v2019.8.15
  • Change version number scheme to CalVer
  • Improve Exp4
  • Update read_SOFA_file()
  • Update 2D plotting functions
  • Improve write_SSR_IRs()
  • Improve Conda environment setup for Jupyter Notebooks
  • Update miro_to_struct()
2019-07-30 (v0.9)
  • Implement SOFA import
  • Update Exp4 to contain SOFA import
  • Delete obsolete Exp3
  • Add named tuple HRIRSignal
  • Implement cart2sph() and sph2cart() utility functions
  • Add Conda environment file for convenient installation of required packages
2019-07-11 (v0.8)
  • Implement Spherical Harmonics coefficients tapering
  • Update Spherical Head Filter to consider tapering
2019-06-17 (v0.7)
  • Implement Bandwidth Extension for Microphone Arrays (BEMA)
  • Edit read_miro_struct(), named tuple ArraySignal and miro_to_struct.m to load center measurements
2019-06-11 (v0.6)
2019-05-23 (v0.5)
  • Implement Spherical Head Filter
  • Implement Spherical Fourier Transform using pseudo-inverse
  • Extract real time capable spatial Fourier transform
  • Extract reversed m index function (Update Exp4)

Contribute

See CONTRIBUTE.rst for full details.

License

This software is licensed under the MIT License (see LICENSE for full details).

References

The sound_field_analysis toolbox is based on the Matlab/C++ Sound Field Analysis Toolbox (SOFiA) toolbox by Benjamin Bernschütz. For more information you may refer to the original publication:

[1] Bernschütz, B., Pörschmann, C., Spors, S., and Weinzierl, S. (2011). SOFiA Sound Field Analysis Toolbox. Proceedings of the ICSA International Conference on Spatial Audio

The Lebedev grid generation was adapted from an implementation by Richard P. Muller.

Owner
Division of Applied Acoustics at Chalmers University of Technology
Division of Applied Acoustics at Chalmers University of Technology
Python module for handling audio metadata

Mutagen is a Python module to handle audio metadata. It supports ASF, FLAC, MP4, Monkey's Audio, MP3, Musepack, Ogg Opus, Ogg FLAC, Ogg Speex, Ogg The

Quod Libet 1.1k Dec 31, 2022
IDing the songs played on the do you radio show

IDing the songs played on the do you radio show

Rasmus Jones 36 Nov 15, 2022
All-In-One Digital Audio Workstation and Plugin Suite

How to install Windows Mac OS X Fedora Ubuntu How to Build Debian and Ubuntu Fedora All Other Linux Distros Mac OS X Windows What is MusiKernel? MusiK

j3ffhubb 111 Sep 21, 2021
SU Music Player — The first open-source PyTgCalls based Pyrogram bot to play music in voice chats

SU Music Player — The first open-source PyTgCalls based Pyrogram bot to play music in voice chats Note Neither this, or PyTgCalls are fully

SU Projects 58 Jan 02, 2023
Python library for audio and music analysis

librosa A python package for music and audio analysis. Documentation See https://librosa.org/doc/ for a complete reference manual and introductory tut

librosa 5.6k Jan 06, 2023
We built this fully functioning Music player in Python. The music player allows you to play/pause and switch to different songs easily.

We built this fully functioning Music player in Python. The music player allows you to play/pause and switch to different songs easily.

1 Nov 19, 2021
Open-Source Tools & Data for Music Source Separation: A Pragmatic Guide for the MIR Practitioner

Open-Source Tools & Data for Music Source Separation: A Pragmatic Guide for the MIR Practitioner

IELab@ Korea University 0 Nov 12, 2021
Gammatone-based spectrograms, using gammatone filterbanks or Fourier transform weightings.

Gammatone Filterbank Toolkit Utilities for analysing sound using perceptual models of human hearing. Jason Heeris, 2013 Summary This is a port of Malc

Jason Heeris 188 Dec 14, 2022
Official implementation of A cappella: Audio-visual Singing VoiceSeparation, from BMVC21

Y-Net Official implementation of A cappella: Audio-visual Singing VoiceSeparation, British Machine Vision Conference 2021 Project page: ipcv.github.io

Juan F. Montesinos 12 Oct 22, 2022
Audio spatialization over WebRTC and JACK Audio Connection Kit

Audio spatialization over WebRTC Spatify provides a framework for building multichannel installations using WebRTC.

Bruno Gola 34 Jun 29, 2022
Royal Music You can play music and video at a time in vc

Royals-Music Royal Music You can play music and video at a time in vc Commands SOON String STRING_SESSION Deployment 🎖 Credits • 🇸ᴏᴍʏᴀ⃝🇯ᴇᴇᴛ • 🇴ғғɪ

2 Nov 23, 2021
This is my voice assistant Patric!

voice-assistant This is my voice assistant Patric! You can add can add commands and even modify his name Indice How to use Installation guide How to u

Norbert Gabos 1 Jun 28, 2022
Klangbecken: The RaBe Endless Music Player

Klangbecken Klangbecken is the minimalistic endless music player for Radio Bern RaBe based on liquidsoap. It supports configurable and editable playli

Radio Bern RaBe 8 Oct 09, 2021
Use python MIDI to write some simple music

Use Python MIDI to write songs

小宝 1 Nov 19, 2021
MelGAN test on audio decoding

Official repository for the paper MelGAN: Generative Adversarial Networks for Conditional Waveform Synthesis The original work URL: https://github.com

Jurio 1 Apr 29, 2022
Code for paper 'Audio-Driven Emotional Video Portraits'.

Audio-Driven Emotional Video Portraits [CVPR2021] Xinya Ji, Zhou Hang, Kaisiyuan Wang, Wayne Wu, Chen Change Loy, Xun Cao, Feng Xu [Project] [Paper] G

197 Dec 31, 2022
Audio features extraction

Yaafe Yet Another Audio Feature Extractor Build status Branch master : Branch dev : Anaconda : Install Conda Yaafe can be easily install with conda. T

Yaafe 231 Dec 26, 2022
Automatically move or copy files based on metadata associated with the files. For example, file your photos based on EXIF metadata or use MP3 tags to file your music files.

Automatically move or copy files based on metadata associated with the files. For example, file your photos based on EXIF metadata or use MP3 tags to file your music files.

Rhet Turnbull 14 Nov 02, 2022
PatrikZero's CS:GO Hearing protection

Program that lowers volume when you die and get flashed in CS:GO. It aims to lower the chance of hearing damage by reducing overall sound exposure. Uses game state integration. Anti-cheat safe.

Patrik Žúdel 224 Dec 04, 2022
Xbot-Music - Bot Play Music and Video in Voice Chat Group Telegram

XBOT-MUSIC A Telegram Music+video Bot written in Python using Pyrogram and Py-Tg

Fariz 2 Jan 20, 2022