Wafer Fault Detection - Wafer circleci with python

Overview

Wafer Fault Detection

Problem Statement:

Wafer (In electronics), also called a slice or substrate, is a thin slice of semiconductor,
such as a crystalline silicon (c-Si), used for fabricationof integrated circuits and in photovoltaics,
to manufacture solar cells.

The inputs of various sensors for different wafers have been provided.
The goal is to build a machine learning model which predicts whether a wafer needs to be replaced or not
(i.e whether it is working or not) nased on the inputs from various sensors.
There are two classes: +1 and -1.
+1: Means that the wafer is in a working condition and it doesn't need to be replaced.
-1: Means that the wafer is faulty and it needa to be replaced.

Data Description

The client will send data in multiple sets of files in batches at a given location.
Data will contain Wafer names and 590 columns of different sensor values for each wafer.
The last column will have the "Good/Bad" value for each wafer.

Apart from training files, we laso require a "schema" file from the client, which contain all the
relevant information about the training files such as:

Name of the files, Length of Date value in FileName, Length of Time value in FileName, NUmber of Columnns, 
Name of Columns, and their dataype.

Data Validation

In This step, we perform different sets of validation on the given set of training files.

Name Validation: We validate the name of the files based on the given name in the schema file. We have 
created a regex patterg as per the name given in the schema fileto use for validation. After validating 
the pattern in the name, we check for the length of the date in the file name as well as the length of time 
in the file name. If all the values are as per requirements, we move such files to "Good_Data_Folder" else
we move such files to "Bad_Data_Folder."

Number of Columns: We validate the number of columns present in the files, and if it doesn't match with the
value given in the schema file, then the file id moves to "Bad_Data_Folder."

Name of Columns: The name of the columns is validated and should be the same as given in the schema file. 
If not, then the file is moved to "Bad_Data_Folder".

The datatype of columns: The datatype of columns is given in the schema file. This is validated when we insert
the files into Database. If the datatype is wrong, then the file is moved to "Bad_Data_Folder."

Null values in columns: If any of the columns in a file have all the values as NULL or missing, we discard such
a file and move it to "Bad_Data_Folder".

Data Insertion in Database

 Database Creation and Connection: Create a database with the given name passed. If the database is already created,
 open the connection to the database.
 
 Table creation in the database: Table with name - "Good_Data", is created in the database for inserting the files 
 in the "Good_Data_Folder" based on given column names and datatype in the schema file. If the table is already
 present, then the new table is not created and new files are inserted in the already present table as we want 
 training to be done on new as well as old training files.
 
 Insertion of file in the table: All the files in the "Good_Data_Folder" are inserted in the above-created table. If
 any file has invalid data type in any of the columns, the file is not loaded in the table and is moved to 
 "Bad_Data_Folder".

Model Training

 Data Export from Db: The data in a stored database is exported as a CSV file to be used for model training.
 
 Data Preprocessing: 
    Check for null values in the columns. If present, impute the null values using the KNN imputer.
    
    Check if any column has zero standard deviation, remove such columns as they don't give any information during 
    model training.
    
 Clustering: KMeans algorithm is used to create clusters in the preprocessed data. The optimum number of clusters 
 is selected

Create a file "Dockerfile" with below content

FROM python:3.7
COPY . /app
WORKDIR /app
RUN pip install -r requirements.txt
ENTRYPOINT [ "python" ]
CMD [ "main.py" ]

Create a "Procfile" with following content

web: gunicorn main:app

create a file ".circleci\config.yml" with following content

> $BASH_ENV echo 'export IMAGE_NAME=python-circleci-docker' >> $BASH_ENV python3 -m venv venv . venv/bin/activate pip install --upgrade pip pip install -r requirements.txt - save_cache: key: deps1-{{ .Branch }}-{{ checksum "requirements.txt" }} paths: - "venv" - run: command: | . venv/bin/activate python -m pytest -v tests/test_script.py - store_artifacts: path: test-reports/ destination: tr1 - store_test_results: path: test-reports/ - setup_remote_docker: version: 19.03.13 - run: name: Build and push Docker image command: | docker build -t $DOCKERHUB_USER/$IMAGE_NAME:$TAG . docker login -u $DOCKERHUB_USER -p $DOCKER_HUB_PASSWORD_USER docker.io docker push $DOCKERHUB_USER/$IMAGE_NAME:$TAG deploy: executor: heroku/default steps: - checkout - run: name: Storing previous commit command: | git rev-parse HEAD > ./commit.txt - heroku/install - setup_remote_docker: version: 18.06.0-ce - run: name: Pushing to heroku registry command: | heroku container:login #heroku ps:scale web=1 -a $HEROKU_APP_NAME heroku container:push web -a $HEROKU_APP_NAME heroku container:release web -a $HEROKU_APP_NAME workflows: build-test-deploy: jobs: - build-and-test - deploy: requires: - build-and-test filters: branches: only: - main ">
version: 2.1
orbs:
  heroku: circleci/[email protected]
jobs:
  build-and-test:
    executor: heroku/default
    docker:
      - image: circleci/python:3.6.2-stretch-browsers
        auth:
          username: mydockerhub-user
          password: $DOCKERHUB_PASSWORD  # context / project UI env-var reference
    steps:
      - checkout
      - restore_cache:
          key: deps1-{{ .Branch }}-{{ checksum "requirements.txt" }}
      - run:
          name: Install Python deps in a venv
          command: |
            echo 'export TAG=0.1.${CIRCLE_BUILD_NUM}' >> $BASH_ENV
            echo 'export IMAGE_NAME=python-circleci-docker' >> $BASH_ENV
            python3 -m venv venv
            . venv/bin/activate
            pip install --upgrade pip
            pip install -r requirements.txt
      - save_cache:
          key: deps1-{{ .Branch }}-{{ checksum "requirements.txt" }}
          paths:
            - "venv"
      - run:
          command: |
            . venv/bin/activate
            python -m pytest -v tests/test_script.py
      - store_artifacts:
          path: test-reports/
          destination: tr1
      - store_test_results:
          path: test-reports/
      - setup_remote_docker:
          version: 19.03.13
      - run:
          name: Build and push Docker image
          command: |
            docker build -t $DOCKERHUB_USER/$IMAGE_NAME:$TAG .
            docker login -u $DOCKERHUB_USER -p $DOCKER_HUB_PASSWORD_USER docker.io
            docker push $DOCKERHUB_USER/$IMAGE_NAME:$TAG
  deploy:
    executor: heroku/default
    steps:
      - checkout
      - run:
          name: Storing previous commit
          command: |
            git rev-parse HEAD > ./commit.txt
      - heroku/install
      - setup_remote_docker:
          version: 18.06.0-ce
      - run:
          name: Pushing to heroku registry
          command: |
            heroku container:login
            #heroku ps:scale web=1 -a $HEROKU_APP_NAME
            heroku container:push web -a $HEROKU_APP_NAME
            heroku container:release web -a $HEROKU_APP_NAME

workflows:
  build-test-deploy:
    jobs:
      - build-and-test
      - deploy:
          requires:
            - build-and-test
          filters:
            branches:
              only:
                - main

to create requirements.txt

pip freeze>requirements.txt

initialize git repo

git push -u origin main ">
git init
git add .
git commit -m "first commit"
git branch -M main
git remote add origin 
   
    
git push -u origin main

   

create a account at circle ci

Circle CI

setup your project

Setup project

Select project setting in CircleCI and below environment variable

DOCKERHUB_USER
DOCKER_HUB_PASSWORD_USER
HEROKU_API_KEY
HEROKU_APP_NAME
HEROKU_EMAIL_ADDRESS
DOCKER_IMAGE_NAME=wafercircle3270303

to update the modification

git add .
git commit -m "proper message"
git push 
Owner
Avnish Yadav
Avnish Yadav
signac-flow - manage workflows with signac

signac-flow - manage workflows with signac The signac framework helps users manage and scale file-based workflows, facilitating data reuse, sharing, a

Glotzer Group 44 Oct 14, 2022
Demonstrate a Dataflow pipeline that saves data from an API into BigQuery table

Overview dataflow-mvp provides a basic example pipeline that pulls data from an API and writes it to a BigQuery table using GCP's Dataflow (i.e., Apac

Chris Carbonell 1 Dec 03, 2021
scikit-survival is a Python module for survival analysis built on top of scikit-learn.

scikit-survival scikit-survival is a Python module for survival analysis built on top of scikit-learn. It allows doing survival analysis while utilizi

Sebastian Pölsterl 876 Jan 04, 2023
PyStan, a Python interface to Stan, a platform for statistical modeling. Documentation: https://pystan.readthedocs.io

PyStan PyStan is a Python interface to Stan, a package for Bayesian inference. Stan® is a state-of-the-art platform for statistical modeling and high-

Stan 229 Dec 29, 2022
Tuplex is a parallel big data processing framework that runs data science pipelines written in Python at the speed of compiled code

Tuplex is a parallel big data processing framework that runs data science pipelines written in Python at the speed of compiled code. Tuplex has similar Python APIs to Apache Spark or Dask, but rather

Tuplex 791 Jan 04, 2023
We're Team Arson and we're using the power of predictive modeling to combat wildfires.

We're Team Arson and we're using the power of predictive modeling to combat wildfires. Arson Map Inspiration There’s been a lot of wildfires in Califo

Jerry Lee 3 Oct 17, 2021
Predictive Modeling & Analytics on Home Equity Line of Credit

Predictive Modeling & Analytics on Home Equity Line of Credit Data (Python) HMEQ Data Set In this assignment we will use Python to examine a data set

Dhaval Patel 1 Jan 09, 2022
Python for Data Analysis, 2nd Edition

Python for Data Analysis, 2nd Edition Materials and IPython notebooks for "Python for Data Analysis" by Wes McKinney, published by O'Reilly Media Buy

Wes McKinney 18.6k Jan 08, 2023
The micro-framework to create dataframes from functions.

The micro-framework to create dataframes from functions.

Stitch Fix Technology 762 Jan 07, 2023
A set of procedures that can realize covid19 virus detection based on blood.

A set of procedures that can realize covid19 virus detection based on blood.

Nuyoah-xlh 3 Mar 07, 2022
Working Time Statistics of working hours and working conditions by industry and company

Working Time Statistics of working hours and working conditions by industry and company

Feng Ruohang 88 Nov 04, 2022
The official repository for ROOT: analyzing, storing and visualizing big data, scientifically

About The ROOT system provides a set of OO frameworks with all the functionality needed to handle and analyze large amounts of data in a very efficien

ROOT 2k Dec 29, 2022
t-SNE and hierarchical clustering are popular methods of exploratory data analysis, particularly in biology.

tree-SNE t-SNE and hierarchical clustering are popular methods of exploratory data analysis, particularly in biology. Building on recent advances in s

Isaac Robinson 61 Nov 21, 2022
Advanced Pandas Vault — Utilities, Functions and Snippets (by @firmai).

PandasVault ⁠— Advanced Pandas Functions and Code Snippets The only Pandas utility package you would ever need. It has no exotic external dependencies

Derek Snow 374 Jan 07, 2023
PrimaryBid - Transform application Lifecycle Data and Design and ETL pipeline architecture for ingesting data from multiple sources to redshift

Transform application Lifecycle Data and Design and ETL pipeline architecture for ingesting data from multiple sources to redshift This project is composed of two parts: Part1 and Part2

Emmanuel Boateng Sifah 1 Jan 19, 2022
Fitting thermodynamic models with pycalphad

ESPEI ESPEI, or Extensible Self-optimizing Phase Equilibria Infrastructure, is a tool for thermodynamic database development within the CALPHAD method

Phases Research Lab 42 Sep 12, 2022
Transform-Invariant Non-Negative Matrix Factorization

Transform-Invariant Non-Negative Matrix Factorization A comprehensive Python package for Non-Negative Matrix Factorization (NMF) with a focus on learn

EMD Group 6 Jul 01, 2022
A real-time financial data streaming pipeline and visualization platform using Apache Kafka, Cassandra, and Bokeh.

Realtime Financial Market Data Visualization and Analysis Introduction This repo shows my project about real-time stock data pipeline. All the code is

6 Sep 07, 2022
DefAP is a program developed to facilitate the exploration of a material's defect chemistry

DefAP is a program developed to facilitate the exploration of a material's defect chemistry. A large number of features are provided and rapid exploration is supported through the use of autoplotting

6 Oct 25, 2022
EOD Historical Data Python Library (Unofficial)

EOD Historical Data Python Library (Unofficial) https://eodhistoricaldata.com Installation python3 -m pip install eodhistoricaldata Note Demo API key

Michael Whittle 20 Dec 22, 2022