PrimaryBid - Transform application Lifecycle Data and Design and ETL pipeline architecture for ingesting data from multiple sources to redshift

Overview

PrimaryBid

Transform application Lifecycle Data and Design and ETL pipeline architecture for ingesting data from multiple sources to redshift This project is composed of two parts: Part1 and Part2

Part1

This part involves ingesting an application lifecycle raw data in .csv formats (“CC Application Lifecycle.csv”). The data is transformed to return various Application stages as column names, and the time of stage completion, as values against each customer ID via python.

Files included in this section include:

  • Solution Directory:
    • application_etl.py (Contains transformation class for application lifecycle raw data)
    • run_application_etl.py (Ingest and executes transformations for application lifecycle raw data)
  • Test Directory:
    • test_application_etl.py (runs a series of test for objects in the transformation class)
    • Input Directory (Contains all the input test files)
    • Output Directory (Contains all the output test files)

Execution:

  1. Execute run_application_etl.py to obtain output file for transformed application lifecycle data.

Modifications:

  1. Extra transformation, bug fixes and other modification can be added in application_etl.py as an object.
  2. For new transformations (new functions), add a test for the function in test_application_etl.py and execute it with pytest -vv.
  3. Call the object in run_application_etl.py after test passes to return desired output.

Part2

This part presents an architectural design to ingest data from a MongoDB database - into a Redshift data platform. The solution accomodates the addition of more data sources in the near future. The DDL scripts which form part of the solution is resusable for ingesting and loading data into redshift.

Files included in this section establishes the creation of target tables for the data ingestion process:

  • dwh.cfg (Infrastucture parameters and configuration)
  • DDL_queries.py (DDL queries to drop, creat, copy/insert data into Redshift)
  • table_setup_load.py (Class to manage the establish connection to database setup and teardown of tables in Redshift)
  • execute_ddl_process.py (script to execute processes in table_setup_load class)
  • test_execute_ddl_process.py (script to test the setup and teardown of resources.)
  • requirement.txt (key libraries needed to execute .py scripts)
  • makefile (file to automate process of installing and testing libraries and .py scripts respectively.)

Execution:

  1. Execute execute_ddl_process.py to create and load data into target tables from S3.

Modifications:

  1. Bucket file sources and other config paramters can be added in dwh.cfg
  2. New DDl queries which includes ingesting data from multiple tables from aggregations/joins can be added in DDL_queries.py.
  3. For other functions not captured in this section work, custom functions can be added in table_setup_load.py
  4. Before executing scripts for production environments, test the modifications by executing test_execute_ddl_process.py

The architecture below highlights the processes involved in ingesting data from various data sources into redshift

  • Architeture

Data Architecture

Owner
Emmanuel Boateng Sifah
Computer scientist, Doctoral researcher, Solutions engineer, Data scientist, Data analyst and Data engineer
Emmanuel Boateng Sifah
Python scripts aim to use a Random Forest machine learning algorithm to predict the water affinity of Metal-Organic Frameworks

The following Python scripts aim to use a Random Forest machine learning algorithm to predict the water affinity of Metal-Organic Frameworks (MOFs). The training set is extracted from the Cambridge S

1 Jan 09, 2022
Visions provides an extensible suite of tools to support common data analysis operations

Visions And these visions of data types, they kept us up past the dawn. Visions provides an extensible suite of tools to support common data analysis

168 Dec 28, 2022
Gaussian processes in TensorFlow

Website | Documentation (release) | Documentation (develop) | Glossary Table of Contents What does GPflow do? Installation Getting Started with GPflow

GPflow 1.7k Jan 06, 2023
Learn machine learning the fun way, with Oracle and RedBull Racing

Red Bull Racing Analytics Hands-On Labs Introduction Are you interested in learning machine learning (ML)? How about doing this in the context of the

Oracle DevRel 55 Oct 24, 2022
A columnar data container that can be compressed.

Unmaintained Package Notice Unfortunately, and due to lack of resources, the Blosc Development Team is unable to maintain this package anymore. During

944 Dec 09, 2022
Active Learning demo using two small datasets

ActiveLearningDemo How to run step one put the dataset folder and use command below to split the dataset to the required structure run utils.py For ea

3 Nov 10, 2021
MotorcycleParts DataAnalysis python

We work with the accounting department of a company that sells motorcycle parts. The company operates three warehouses in a large metropolitan area.

NASEEM A P 1 Jan 12, 2022
Convert tables stored as images to an usable .csv file

Convert an image of numbers to a .csv file This Python program aims to convert images of array numbers to corresponding .csv files. It uses OpenCV for

711 Dec 26, 2022
This repo contains a simple but effective tool made using python which can be used for quality control in statistical approach.

📈 Statistical Quality Control 📉 This repo contains a simple but effective tool made using python which can be used for quality control in statistica

SasiVatsal 8 Oct 18, 2022
Monitor the stability of a pandas or spark dataframe ⚙︎

Population Shift Monitoring popmon is a package that allows one to check the stability of a dataset. popmon works with both pandas and spark datasets.

ING Bank 403 Dec 07, 2022
Predictive Modeling & Analytics on Home Equity Line of Credit

Predictive Modeling & Analytics on Home Equity Line of Credit Data (Python) HMEQ Data Set In this assignment we will use Python to examine a data set

Dhaval Patel 1 Jan 09, 2022
DenseClus is a Python module for clustering mixed type data using UMAP and HDBSCAN

DenseClus is a Python module for clustering mixed type data using UMAP and HDBSCAN. Allowing for both categorical and numerical data, DenseClus makes it possible to incorporate all features in cluste

Amazon Web Services - Labs 53 Dec 08, 2022
Processo de ETL (extração, transformação, carregamento) realizado pela equipe no projeto final do curso da Soul Code Academy.

Processo de ETL (extração, transformação, carregamento) realizado pela equipe no projeto final do curso da Soul Code Academy.

Débora Mendes de Azevedo 1 Feb 03, 2022
An ETL framework + Monitoring UI/API (experimental project for learning purposes)

Fastlane An ETL framework for building pipelines, and Flask based web API/UI for monitoring pipelines. Project structure fastlane |- fastlane: (ETL fr

Dan Katz 2 Jan 06, 2022
Repositori untuk menyimpan material Long Course STMKGxHMGI tentang Geophysical Python for Seismic Data Analysis

Long Course "Geophysical Python for Seismic Data Analysis" Instruktur: Dr.rer.nat. Wiwit Suryanto, M.Si Dipersiapkan oleh: Anang Sahroni Waktu: Sesi 1

Anang Sahroni 0 Dec 04, 2021
Supply a wrapper ``StockDataFrame`` based on the ``pandas.DataFrame`` with inline stock statistics/indicators support.

Stock Statistics/Indicators Calculation Helper VERSION: 0.3.2 Introduction Supply a wrapper StockDataFrame based on the pandas.DataFrame with inline s

Cedric Zhuang 1.1k Dec 28, 2022
Data Intelligence Applications - Online Product Advertising and Pricing with Context Generation

Data Intelligence Applications - Online Product Advertising and Pricing with Context Generation Overview Consider the scenario in which advertisement

Manuel Bressan 2 Nov 18, 2021
Pipeline to convert a haploid assembly into diploid

HapDup (haplotype duplicator) is a pipeline to convert a haploid long read assembly into a dual diploid assembly. The reconstructed haplotypes

Mikhail Kolmogorov 50 Jan 05, 2023
Collections of pydantic models

pydantic-collections The pydantic-collections package provides BaseCollectionModel class that allows you to manipulate collections of pydantic models

Roman Snegirev 20 Dec 26, 2022
Lale is a Python library for semi-automated data science.

Lale is a Python library for semi-automated data science. Lale makes it easy to automatically select algorithms and tune hyperparameters of pipelines that are compatible with scikit-learn, in a type-

International Business Machines 293 Dec 29, 2022