Repositori untuk menyimpan material Long Course STMKGxHMGI tentang Geophysical Python for Seismic Data Analysis

Overview

header_image

Long Course

"Geophysical Python for Seismic Data Analysis"

Instruktur: Dr.rer.nat. Wiwit Suryanto, M.Si

Dipersiapkan oleh: Anang Sahroni

Waktu:

Sesi 1: 18 September 2021

Sesi 2: 25 September 2021

Tempat: Zoom Meeting

Agenda: Memberikan wawasan kepada mahasiswa Geofisika dalam pengolahan data Geofisika: pemrosesan data seismik menggunakan python.

Luaran

  1. Peserta dapat melakukan instalasi Python
  2. Peserta dapat membuat dan menggunakan Jupyter Notebook
  3. Peserta dapat membaca, memfilter, dan mengeplot peta dan statistik gempa bumi menggunakan modul umum Python seperti numpy, scipy, dan matplotlib
  4. Peserta dapat menentukan parameter gempa menggunakan metode yang sederhana pada Python memanfaatkan modul seismologi seperti obspy

Peralatan untuk peserta

Laptop ataupun Personal Computer (PC) yang terkoneksi dengan internet.
Jika hendak menjalankan kode tanpa instalasi bisa melalui: Binder

Data:

  1. Katalog Gempa Bumi Badan Meteorologi Klimatologi dan Geofisika (BMKG)
  2. Titik-titik Stasiun untuk berbagai jaringan seismometer

Jadwal

Topik
PRESESI: 17 September 2021
Instalasi Python dalam Miniconda atau PDF
1. Instalasi Miniconda pada Windows, Linux, ataupun MacOS
2. Menjalankan Python Console melalui Anaconda Prompt
3. Menulis kode dalam editor (Integrated Development Environment/IDE) kode dan menjalankannya melalui Anaconda Prompt
4. Pengenalan IDE dan beberapa contohnya
5. Menginstall pandas, numpy, matplotlib, scipy, Cartopy, dan notebook menggunakan Anaconda Prompt pada virtual environment
6. Menjalankan kode sederhana di Jupyter Notebook
7. Memanggil fungsi bawaan python (math), mencoba, dan memanggil bantuan (help) untuk masing-masing fungsi
8. Memberikan catatan dan gambar dalam bentuk Markdown di Jupyter Notebook
9. Menyimpan notebook pada repositori Github dan menambahkan ke Binder
10. Mengupdate notebook dan melakukan commit ke repositori
EXERCISE: Membuat panduan instalasi Miniconda pada Jupyter Notebook dan menambahkannya di repositori Github individu.
SESI 1: 18 September 2021
Introduction to geophysical programming using python: basic python for seismology Materi 1 (PDF/Open In Colab) dan Materi 2 (PDF/Open In Colab) atau Binder
1. Membaca data katalog menggunakan pandas
2. Membedakan jenis-jenis data antar kolom pada katalog (String, Integer, dan Float)
3. Mengambil salah satu kolom ke dalam bentuk List dan mempelajari metode-metode pada List (indexing, slicing, append, dan lain sebagainya)
4. Menggunakan for loop untuk mengkonversi format String menjadi datetime untuk waktu kejadian
5. Menggunakan conditional untuk memfilter katalog berdasarkan besar magnitudo atau waktu
6. Membuat fungsi untuk memfilter katalog berdasarkan kedalaman dan menyimpannya menjadi modul siap impor
7. Membuat plot magnitudo dengan jumlah kejadian dan waktu kejadian (dapat berupa G-R Plot atau plot sederhana)
8. Mengkombinasikan List latitude dan longitude untuk mengeplot episenter
9. Mengintegrasikan kolom magnitude untuk membedakan ukuran titik titik plot
10. Mengintegrasikan kolom kedalaman untuk membedakan warna titik plot
11. Menambahkan basemap pada plot Menggunakan Cartopy
EXERCISE: Membaca file titik stasiun, memfilter berdasarkan network, dan mengeplotnya bersama dengan titik-titik gempa.
SESI 2: 25 September 2021
Source Mechanism and processing seismic data with python : Determine earthquake epicenter, hypocenter, and type of P Wave
Jika menggunakan komputer lokal silahkan install modul yang dibutuhkan pada sesi dua dengan cara: conda install -c conda-forge xarray rasterio tqdm
1. Menentukan episenter dengan metode lingkaran Materi
2. Menentukan hiposenter dengan metode Geiger dan probabilistik Materi 1, Materi 2
3. Pengenalan pengolahan waveform dengan obspy Materi

Software untuk diinstall

  1. Miniconda. Instalasi Python akan dilakukan menggunakan Anaconda Distribution dalam bentuk lite yaitu Miniconda. Dengan Miniconda instalasi paket atau modul pendukung untuk Python akan lebih mudah dan tertata. Unduh installer Miniconda, pilih untuk versi Python 3.8.
  2. Editor teks agar penulisan kode lebih mudah karena biasanya sudah disertai pewarnaan kode (syntax highlighting) dan indentasi otomatis. Editor teks dapat menggunakan Notepad++, SublimeText, atau menggunakan IDE yang lebih kompleks seperti PyCharm dan Visual Studio Code.

Software-software yang dibutuhkan tersebut sudah harus diinstall sebelum proses pemberian materi dimulai karena ukurannya cukup besar.

Akun Github

Peserta workshop dianjurkan mendaftarkan akun GitHub melalui Daftar Github

Bacaan Tambahan:

Peserta dapat belajar pada Lesson di Software Carpentry dengan materi yang mendalam dan metode yang sama yaitu learning by doing.

Referensi

Panduan ini disusun terinspirasi dari materi pada Software Carpentry, materi inversi hiposenter probabilistik Igel & Geßele di Seismo Live,panduan workshop Leonardo Uieda pada repositori, serta Lisa Itauxe Python for ES Student berikut ini.

You might also like...
Tablexplore is an application for data analysis and plotting built in Python using the PySide2/Qt toolkit.
Tablexplore is an application for data analysis and plotting built in Python using the PySide2/Qt toolkit.

Tablexplore is an application for data analysis and plotting built in Python using the PySide2/Qt toolkit.

 A data analysis using python and pandas to showcase trends in school performance.
A data analysis using python and pandas to showcase trends in school performance.

A data analysis using python and pandas to showcase trends in school performance. A data analysis to showcase trends in school performance using Panda

A collection of learning outcomes data analysis using Python and SQL, from DQLab.
A collection of learning outcomes data analysis using Python and SQL, from DQLab.

Data Analyst with PYTHON Data Analyst berperan dalam menghasilkan analisa data serta mempresentasikan insight untuk membantu proses pengambilan keputu

DaDRA (day-druh) is a Python library for Data-Driven Reachability Analysis.
DaDRA (day-druh) is a Python library for Data-Driven Reachability Analysis.

DaDRA (day-druh) is a Python library for Data-Driven Reachability Analysis. The main goal of the package is to accelerate the process of computing estimates of forward reachable sets for nonlinear dynamical systems.

Python-based Space Physics Environment Data Analysis Software

pySPEDAS pySPEDAS is an implementation of the SPEDAS framework for Python. The Space Physics Environment Data Analysis Software (SPEDAS) framework is

Python Project on Pro Data Analysis Track

Udacity-BikeShare-Project: Python Project on Pro Data Analysis Track Basic Data Exploration with pandas on Bikeshare Data Basic Udacity project using

Sentiment analysis on streaming twitter data using Spark Structured Streaming & Python
Sentiment analysis on streaming twitter data using Spark Structured Streaming & Python

Sentiment analysis on streaming twitter data using Spark Structured Streaming & Python This project is a good starting point for those who have little

 Project under the certification
Project under the certification "Data Analysis with Python" on FreeCodeCamp

Sea Level Predictor Assignment You will anaylize a dataset of the global average sea level change since 1880. You will use the data to predict the sea

Larch: Applications and Python Library for Data Analysis of X-ray Absorption Spectroscopy (XAS, XANES, XAFS, EXAFS), X-ray Fluorescence (XRF) Spectroscopy and Imaging

Larch: Data Analysis Tools for X-ray Spectroscopy and More Documentation: http://xraypy.github.io/xraylarch Code: http://github.com/xraypy/xraylarch L

Releases(v1.0.0)
Owner
Anang Sahroni
newbie/amateur
Anang Sahroni
Processo de ETL (extração, transformação, carregamento) realizado pela equipe no projeto final do curso da Soul Code Academy.

Processo de ETL (extração, transformação, carregamento) realizado pela equipe no projeto final do curso da Soul Code Academy.

Débora Mendes de Azevedo 1 Feb 03, 2022
Transform-Invariant Non-Negative Matrix Factorization

Transform-Invariant Non-Negative Matrix Factorization A comprehensive Python package for Non-Negative Matrix Factorization (NMF) with a focus on learn

EMD Group 6 Jul 01, 2022
A collection of robust and fast processing tools for parsing and analyzing web archive data.

ChatNoir Resiliparse A collection of robust and fast processing tools for parsing and analyzing web archive data. Resiliparse is part of the ChatNoir

ChatNoir 24 Nov 29, 2022
Pizza Orders Data Pipeline Usecase Solved by SQL, Sqoop, HDFS, Hive, Airflow.

PizzaOrders_DataPipeline There is a Tony who is owning a New Pizza shop. He knew that pizza alone was not going to help him get seed funding to expand

Melwin Varghese P 4 Jun 05, 2022
Program that predicts the NBA mvp based on data from previous years.

NBA MVP Predictor A machine learning model using RandomForest Regression that predicts NBA MVP's using player data. Explore the docs » View Demo · Rep

Muhammad Rabee 1 Jan 21, 2022
PyStan, a Python interface to Stan, a platform for statistical modeling. Documentation: https://pystan.readthedocs.io

PyStan PyStan is a Python interface to Stan, a package for Bayesian inference. Stan® is a state-of-the-art platform for statistical modeling and high-

Stan 229 Dec 29, 2022
DenseClus is a Python module for clustering mixed type data using UMAP and HDBSCAN

DenseClus is a Python module for clustering mixed type data using UMAP and HDBSCAN. Allowing for both categorical and numerical data, DenseClus makes it possible to incorporate all features in cluste

Amazon Web Services - Labs 53 Dec 08, 2022
LynxKite: a complete graph data science platform for very large graphs and other datasets.

LynxKite is a complete graph data science platform for very large graphs and other datasets. It seamlessly combines the benefits of a friendly graphical interface and a powerful Python API.

124 Dec 14, 2022
MoRecon - A tool for reconstructing missing frames in motion capture data.

MoRecon - A tool for reconstructing missing frames in motion capture data.

Yuki Nishidate 38 Dec 03, 2022
Example Of Splunk Search Query With Python And Splunk Python SDK

SSQAuto (Splunk Search Query Automation) Example Of Splunk Search Query With Python And Splunk Python SDK installation: ➜ ~ git clone https://github.c

AmirHoseinTangsiriNET 1 Nov 14, 2021
Fancy data functions that will make your life as a data scientist easier.

WhiteBox Utilities Toolkit: Tools to make your life easier Fancy data functions that will make your life as a data scientist easier. Installing To ins

WhiteBox 3 Oct 03, 2022
A Python adaption of Augur to prioritize cell types in perturbation analysis.

A Python adaption of Augur to prioritize cell types in perturbation analysis.

Theis Lab 2 Mar 29, 2022
Toolchest provides APIs for scientific and bioinformatic data analysis.

Toolchest Python Client Toolchest provides APIs for scientific and bioinformatic data analysis. It allows you to abstract away the costliness of runni

Toolchest 11 Jun 30, 2022
A Python package for Bayesian forecasting with object-oriented design and probabilistic models under the hood.

Disclaimer This project is stable and being incubated for long-term support. It may contain new experimental code, for which APIs are subject to chang

Uber Open Source 1.6k Dec 29, 2022
Galvanalyser is a system for automatically storing data generated by battery cycling machines in a database

Galvanalyser is a system for automatically storing data generated by battery cycling machines in a database, using a set of "harvesters", whose job it

Battery Intelligence Lab 20 Sep 28, 2022
Project under the certification "Data Analysis with Python" on FreeCodeCamp

Sea Level Predictor Assignment You will anaylize a dataset of the global average sea level change since 1880. You will use the data to predict the sea

Bhavya Gopal 3 Jan 31, 2022
High Dimensional Portfolio Selection with Cardinality Constraints

High-Dimensional Portfolio Selecton with Cardinality Constraints This repo contains code for perform proximal gradient descent to solve sample average

Du Jinhong 2 Mar 22, 2022
This mini project showcase how to build and debug Apache Spark application using Python

Spark app can't be debugged using normal procedure. This mini project showcase how to build and debug Apache Spark application using Python programming language. There are also options to run Spark a

Denny Imanuel 1 Dec 29, 2021
Tokyo 2020 Paralympics, Analytics

Tokyo 2020 Paralympics, Analytics Thanks for checking out my app! It was built entirely using matplotlib and Tokyo 2020 Paralympics data. This applica

Petro Ivaniuk 1 Nov 18, 2021