The pure and clear PyTorch Distributed Training Framework.

Overview

The pure and clear PyTorch Distributed Training Framework.

Introduction

Distribuuuu is a Distributed Classification Training Framework powered by native PyTorch.

Please check tutorial for detailed Distributed Training tutorials:

For the complete training framework, please see distribuuuu.

Requirements and Usage

Dependency

  • Install PyTorch>= 1.6 (has been tested on 1.6, 1.7.1, 1.8 and 1.8.1)
  • Install other dependencies: pip install -r requirements.txt

Dataset

Download the ImageNet dataset and move validation images to labeled subfolders, using the script valprep.sh.

Expected datasets structure for ILSVRC
ILSVRC
|_ train
|  |_ n01440764
|  |_ ...
|  |_ n15075141
|_ val
|  |_ n01440764
|  |_ ...
|  |_ n15075141
|_ ...

Create a directory containing symlinks:

mkdir -p /path/to/distribuuuu/data

Symlink ILSVRC:

ln -s /path/to/ILSVRC /path/to/distribuuuu/data/ILSVRC

Basic Usage

Single Node with one task

# 1 node, 8 GPUs
python -m torch.distributed.launch \
    --nproc_per_node=8 \
    --nnodes=1 \
    --node_rank=0 \
    --master_addr=localhost \
    --master_port=29500 \
    train_net.py --cfg config/resnet18.yaml

Distribuuuu use yacs, a elegant and lightweight package to define and manage system configurations. You can setup config via a yaml file, and overwrite by other opts. If the yaml is not provided, the default configuration file will be used, please check distribuuuu/config.py.

python -m torch.distributed.launch \
    --nproc_per_node=8 \
    --nnodes=1 \
    --node_rank=0 \
    --master_addr=localhost \
    --master_port=29500 \
    train_net.py --cfg config/resnet18.yaml \
    OUT_DIR /tmp \
    MODEL.SYNCBN True \
    TRAIN.BATCH_SIZE 256

# --cfg config/resnet18.yaml parse config from file
# OUT_DIR /tmp            overwrite OUT_DIR
# MODEL.SYNCBN True       overwrite MODEL.SYNCBN
# TRAIN.BATCH_SIZE 256    overwrite TRAIN.BATCH_SIZE
Single Node with two tasks
# 1 node, 2 task, 4 GPUs per task (8GPUs)
# task 1:
CUDA_VISIBLE_DEVICES=0,1,2,3 python -m torch.distributed.launch \
    --nproc_per_node=4 \
    --nnodes=2 \
    --node_rank=0 \
    --master_addr=localhost \
    --master_port=29500 \
    train_net.py --cfg config/resnet18.yaml

# task 2:
CUDA_VISIBLE_DEVICES=4,5,6,7 python -m torch.distributed.launch \
    --nproc_per_node=4 \
    --nnodes=2 \
    --node_rank=1 \
    --master_addr=localhost \
    --master_port=29500 \
    train_net.py --cfg config/resnet18.yaml
Multiple Nodes Training
# 2 node, 8 GPUs per node (16GPUs)
# node 1:
python -m torch.distributed.launch \
    --nproc_per_node=8 \
    --nnodes=2 \
    --node_rank=0 \
    --master_addr="10.198.189.10" \
    --master_port=29500 \
    train_net.py --cfg config/resnet18.yaml

# node 2:
python -m torch.distributed.launch \
    --nproc_per_node=8 \
    --nnodes=2 \
    --node_rank=1 \
    --master_addr="10.198.189.10" \
    --master_port=29500 \
    train_net.py --cfg config/resnet18.yaml

Slurm Cluster Usage

# see srun --help 
# and https://slurm.schedmd.com/ for details

# example: 64 GPUs
# batch size = 64 * 128 = 8192
# itertaion = 128k / 8192 = 156 
# lr = 64 * 0.1 = 6.4

srun --partition=openai-a100 \
     -n 64 \
     --gres=gpu:8 \
     --ntasks-per-node=8 \
     --job-name=Distribuuuu \
     python -u train_net.py --cfg config/resnet18.yaml \
     TRAIN.BATCH_SIZE 128 \
     OUT_DIR ./resnet18_8192bs \
     OPTIM.BASE_LR 6.4

Baselines

Baseline models trained by Distribuuuu:

  • We use SGD with momentum of 0.9, a half-period cosine schedule, and train for 100 epochs.
  • We use a reference learning rate of 0.1 and a weight decay of 5e-5 (1e-5 For EfficientNet).
  • The actual learning rate(Base LR) for each model is computed as (batch-size / 128) * reference-lr.
  • Only standard data augmentation techniques(RandomResizedCrop and RandomHorizontalFlip) are used.

PS: use other robust tricks(more epochs, efficient data augmentation, etc.) to get better performance.

Arch Params(M) Total batch Base LR [email protected] [email protected] model / config
resnet18 11.690 256 (32*8GPUs) 0.2 70.902 89.894 Drive / cfg
resnet18 11.690 1024 (128*8GPUs) 0.8 70.994 89.892
resnet18 11.690 8192 (128*64GPUs) 6.4 70.165 89.374
resnet18 11.690 16384 (256*64GPUs) 12.8 68.766 88.381
efficientnet_b0 5.289 512 (64*8GPUs) 0.4 74.540 91.744 Drive / cfg
resnet50 25.557 256 (32*8GPUs) 0.2 77.252 93.430 Drive / cfg
botnet50 20.859 256 (32*8GPUs) 0.2 77.604 93.682 Drive / cfg
regnetx_160 54.279 512 (64*8GPUs) 0.4 79.992 95.118 Drive / cfg
regnety_160 83.590 512 (64*8GPUs) 0.4 80.598 95.090 Drive / cfg
regnety_320 145.047 512 (64*8GPUs) 0.4 80.824 95.276 Drive / cfg

Zombie processes problem

Before PyTorch1.8, torch.distributed.launch will leave some zombie processes after using Ctrl + C, try to use the following cmd to kill the zombie processes. (fairseq/issues/487):

kill $(ps aux | grep YOUR_SCRIPT.py | grep -v grep | awk '{print $2}')

PyTorch >= 1.8 is suggested, which fixed the issue about zombie process. (pytorch/pull/49305)

Acknowledgments

Provided codes were adapted from:

I strongly recommend you to choose pycls, a brilliant image classification codebase and adopted by a number of projects at Facebook AI Research.

Citation

@misc{bigballon2021distribuuuu,
  author = {Wei Li},
  title = {Distribuuuu: The pure and clear PyTorch Distributed Training Framework},
  howpublished = {\url{https://github.com/BIGBALLON/distribuuuu}},
  year = {2021}
}

Feel free to contact me if you have any suggestions or questions, issues are welcome, create a PR if you find any bugs or you want to contribute. ๐Ÿฐ

Owner
WILL LEE
ๅญธ็„กๆญขๅขƒ ๐Ÿ’Œ โ€โ€โ€โ€โ€โ€โ€โ€โ€โ€โ€โ€โ€โ€โ€โ€โ€โ€โ€โ€โ€โ€โ€โ€โ€
WILL LEE
[CVPR 2022] Official PyTorch Implementation for "Reference-based Video Super-Resolution Using Multi-Camera Video Triplets"

Reference-based Video Super-Resolution (RefVSR) Official PyTorch Implementation of the CVPR 2022 Paper Project | arXiv | RealMCVSR Dataset This repo c

Junyong Lee 151 Dec 30, 2022
Reinforcement Learning for finance

Reinforcement Learning for Finance We apply reinforcement learning for stock trading. Fetch Data Example import utils # fetch symbols from yahoo fina

Tomoaki Fujii 159 Jan 03, 2023
Python implementation of Wu et al (2018)'s registration fusion

reg-fusion Projection of a central sulcus probability map using the RF-ANTs approach (right hemisphere shown). This is a Python implementation of Wu e

Dan Gale 26 Nov 12, 2021
Contrastive Learning for Compact Single Image Dehazing, CVPR2021

AECR-Net Contrastive Learning for Compact Single Image Dehazing, CVPR2021. Official Pytorch based implementation. Paper arxiv Pytorch Version TODO: mo

glassy 253 Jan 01, 2023
Using python and scikit-learn to make stock predictions

MachineLearningStocks in python: a starter project and guide EDIT as of Feb 2021: MachineLearningStocks is no longer actively maintained MachineLearni

Robert Martin 1.3k Dec 29, 2022
Code for ICCV 2021 paper Graph-to-3D: End-to-End Generation and Manipulation of 3D Scenes using Scene Graphs

Graph-to-3D This is the official implementation of the paper Graph-to-3d: End-to-End Generation and Manipulation of 3D Scenes Using Scene Graphs | arx

Helisa Dhamo 33 Jan 06, 2023
GPU Accelerated Non-rigid ICP for surface registration

GPU Accelerated Non-rigid ICP for surface registration Introduction Preivous Non-rigid ICP algorithm is usually implemented on CPU, and needs to solve

Haozhe Wu 144 Jan 04, 2023
Extending JAX with custom C++ and CUDA code

Extending JAX with custom C++ and CUDA code This repository is meant as a tutorial demonstrating the infrastructure required to provide custom ops in

Dan Foreman-Mackey 237 Dec 23, 2022
Diverse Image Captioning with Context-Object Split Latent Spaces (NeurIPS 2020)

Diverse Image Captioning with Context-Object Split Latent Spaces This repository is the PyTorch implementation of the paper: Diverse Image Captioning

Visual Inference Lab @TU Darmstadt 34 Nov 21, 2022
FSL-Mate: A collection of resources for few-shot learning (FSL).

FSL-Mate is a collection of resources for few-shot learning (FSL). In particular, FSL-Mate currently contains FewShotPapers: a paper list which tracks

Yaqing Wang 1.5k Jan 08, 2023
WRENCH: Weak supeRvision bENCHmark

๐Ÿ”ง What is it? Wrench is a benchmark platform containing diverse weak supervision tasks. It also provides a common and easy framework for development

Jieyu Zhang 176 Dec 28, 2022
Hl classification bc - A Network-Based High-Level Data Classification Algorithm Using Betweenness Centrality

A Network-Based High-Level Data Classification Algorithm Using Betweenness Centr

Esteban Vilca 3 Dec 01, 2022
This repository is for the preprint "A generative nonparametric Bayesian model for whole genomes"

BEAR Overview This repository contains code associated with the preprint A generative nonparametric Bayesian model for whole genomes (2021), which pro

Debora Marks Lab 10 Sep 18, 2022
Pytorch implementation of Decoupled Spatial-Temporal Transformer for Video Inpainting

Decoupled Spatial-Temporal Transformer for Video Inpainting By Rui Liu, Hanming Deng, Yangyi Huang, Xiaoyu Shi, Lewei Lu, Wenxiu Sun, Xiaogang Wang, J

51 Dec 13, 2022
Ultra-lightweight human body posture key point CNN model. ModelSize:2.3MB HUAWEI P40 NCNN benchmark: 6ms/img,

Ultralight-SimplePose Support NCNN mobile terminal deployment Based on MXNET(=1.5.1) GLUON(=0.7.0) framework Top-down strategy: The input image is t

223 Dec 27, 2022
PyTorch code for our paper "Attention in Attention Network for Image Super-Resolution"

Under construction... Attention in Attention Network for Image Super-Resolution (A2N) This repository is an PyTorch implementation of the paper "Atten

Haoyu Chen 71 Dec 30, 2022
Reinforcement learning algorithms in RLlib

raylab Reinforcement learning algorithms in RLlib and PyTorch. Installation pip install raylab Quickstart Raylab provides agents and environments to b

ร‚ngelo 50 Sep 08, 2022
Official implementation for Multi-Modal Interaction Graph Convolutional Network for Temporal Language Localization in Videos

Multi-modal Interaction Graph Convolutioal Network for Temporal Language Localization in Videos Official implementation for Multi-Modal Interaction Gr

Zongmeng Zhang 15 Oct 18, 2022
PyTorch implementation for the paper Visual Representation Learning with Self-Supervised Attention for Low-Label High-Data Regime

Visual Representation Learning with Self-Supervised Attention for Low-Label High-Data Regime Created by Prarthana Bhattacharyya. Disclaimer: This is n

Prarthana Bhattacharyya 5 Nov 08, 2022
The first machine learning framework that encourages learning ML concepts instead of memorizing class functions.

SeaLion is designed to teach today's aspiring ml-engineers the popular machine learning concepts of today in a way that gives both intuition and ways of application. We do this through concise algori

Anish 324 Dec 27, 2022