πŸš— INGI Dakar 2K21 - Be the first one on the finish line ! πŸš—

Overview

πŸš— INGI Dakar 2K21 - Be the first one on the finish line ! πŸš—

This year's first semester Club Info challenge will put you at the head of a car racing team. You will participate to the world's most famous racing contest, the INGI Dakar. Your goal is to build the best car, and to beat your opponents by reaching the furthest distance from the starting line.

Challenge statement

Each group will be put in charge of a car racing team. Ultimately, your goal is to reach the furthest distance from the starting line, with any of your cars. For this, you will have 6 generations of 20 cars. Each generation will be produced based on the previous one. Your job is thus to implement the algorithm that takes the previous generation of cars in argument, and that produces the next generation. Such an algorithm is called a genetic algorithm, for which a theoretical background is given hereafter.

Genetic algorithms

Genetic algorithms (GA) are inspired by the process of natural selection. They are used to resolve complex problems. They use operators such as mutation, crossover and selection. GA process is split into generations. Each generation is composed of a finite number of individuals which are built from the best individuals of the last generation and one or several operators. The first generation is generally randomly created.

Genetic algorithms are used for a large variety of problems from antenna shape optimization to minimize the weight of structures embarked in mars rovers.

A genetic algorithm is based on three operators:

  • Mutation, a mutation is a random modification of a parameter for an individual in the generation,
  • Crossover, a crossover is the creation of an individual based on parameters values from several members of the last generation,
  • Selection, in a genetic algorithm, we select the best individuals of a generation to construct the next generation.

Alternative text describing the image

The Mutation operator is used to ensure that the selection is not trapped in a local optima and can not reach the global optima for each parameters.

Some useful links:

Program specifications

The program for the INGI Dakar 2K21 is composed of 7 Python modules:

  • Car.py: Defines the class Car that represents a car of the game. A Car is composed of two Wheels and a Chassis, where the Wheels are located on two of the four Chassis vertices.
  • Chassis.py: Defines the class Chassis that represents a car chassis. A Chassis is represented by four vertices connected with each other in a quadrilateral shape.
  • CustomFormatter.py: Used for logging purposes.
  • Game.py: Defines the class Game that represents a game of INGI Dakar 2K21, i.e. the simulation of the 6 generations of 20 cars.
  • main.py: Entry point of INGI Dakar 2K21, which launches the simulations and computes the score.
  • Terrain.py: Defines the class Terrain that represents the terrain on which the cars are driving.
  • Wheel.py: Defines the class Wheel that represents a car's wheel. A Wheel is defined by its radius and the fact that it is a motor wheel or not.

To participate to the challenge, you only have to modify the function next_generation in the module main.py, that takes a representation of the game world (a b2World object) and the previous generation of cars (a list of Car objects) as arguments, and that returns the next generation of cars (also a list of Car objects). The car features that you can update for the next generation are given below.

Car features

A car is composed of the following (the numbers in bold cannot be changed):

  • TWO wheels, one of which is a motor wheel
  • A chassis, composed by FOUR vertices, linked together to form a polygon shape.

The car features that you can modify to reach the maximum distance are the following:

  • Radius of the two wheels, separately.
  • Which wheel is the motor wheel.
  • Position of the four vertices of the chassis.
  • To which of the chassis' vertices the two wheels are attached.

Please consult the corresponding classes to understand how those features are expressed and used in the program.

Score computation

To start the simulation of the challenge, just run the python3 main.py Python module. You must also activate the python virtual environment with source penv/bin/activate.

The execution of the challenge, and computation of your final score, is as follows:

  • Each generation contains 20 cars. The maximum distance reached by any of the cars is recorded as the score of this generation.
  • A game is composed of 6 generations. The score of a game is the maximum score among all the generations.
  • To smoothen the results, 5 games are launched after each other. Your final score is the average of the different score you obtained during the games.

At the end of the 5 games, a plot will be shown, with your results for the 5 games.

Installation and execution

Installation

To install the project, first clone the repository with the following command:

git clone https://github.com/ClubINFO-INGI-UCLouvain/INGI-Dakar-2K21-Challenge.git

Then, install the needed libraries by running the install.sh script, inside the project directory:

python3 -m venv penv;
source  penv/bin/activate;
chmod +x install.sh;
./install.sh;

Execution

To run the challenge simulation, you can simply run the main.py Python module in the src directory, with the following command:

cd src/
python3 main.py [--seed_terrain SEED] [--seed_car SEED] [--no_UI] [--no_plot]

The command line arguments, all optional, are the following:

  • --seed_terrain SEED (with SEED an integer): sets the seed for the random generation of the game terrain to SEED, for reproducibility of the simulations
  • --seed_car SEED (with SEED an integer): sets the seed for the random generation of the first generation of cars to SEED, for reproducibility of the simulations
  • --no_UI: does not show the graphical interface of the game, which drastically speeds up the simulations
  • --no_plot: does not show the plot of the games' result at the end of all the games

Note that, for the contest, the seeds will be fixed for equity among the groups.

There is also a hidden argument, maybe you can try to find it πŸ˜‰

Owner
ClubINFO INGI (UCLouvain)
ClubINFO INGI (UCLouvain)
Official implementation for paper Render In-between: Motion Guided Video Synthesis for Action Interpolation

Render In-between: Motion Guided Video Synthesis for Action Interpolation [Paper] [Supp] [arXiv] [4min Video] This is the official Pytorch implementat

8 Oct 27, 2022
Collection of common code that's shared among different research projects in FAIR computer vision team.

fvcore fvcore is a light-weight core library that provides the most common and essential functionality shared in various computer vision frameworks de

Meta Research 1.5k Jan 07, 2023
A simple tutoral for error correction task, based on Pytorch

gramcorrector A simple tutoral for error correction task, based on Pytorch Grammatical Error Detection (sentence-level) a binary sequence-based classi

peiyuan_gong 8 Dec 03, 2022
A Flow-based Generative Network for Speech Synthesis

WaveGlow: a Flow-based Generative Network for Speech Synthesis Ryan Prenger, Rafael Valle, and Bryan Catanzaro In our recent paper, we propose WaveGlo

NVIDIA Corporation 2k Dec 26, 2022
Supplementary code for the experiments described in the 2021 ISMIR submission: Leveraging Hierarchical Structures for Few Shot Musical Instrument Recognition.

Music Trees Supplementary code for the experiments described in the 2021 ISMIR submission: Leveraging Hierarchical Structures for Few Shot Musical Ins

Hugo Flores GarcΓ­a 32 Nov 22, 2022
An official reimplementation of the method described in the INTERSPEECH 2021 paper - Speech Resynthesis from Discrete Disentangled Self-Supervised Representations.

Speech Resynthesis from Discrete Disentangled Self-Supervised Representations Implementation of the method described in the Speech Resynthesis from Di

Facebook Research 253 Jan 06, 2023
The Official PyTorch Implementation of "VAEBM: A Symbiosis between Variational Autoencoders and Energy-based Models" (ICLR 2021 spotlight paper)

Official PyTorch implementation of "VAEBM: A Symbiosis between Variational Autoencoders and Energy-based Models" (ICLR 2021 Spotlight Paper) Zhisheng

NVIDIA Research Projects 45 Dec 26, 2022
An optimization and data collection toolbox for convenient and fast prototyping of computationally expensive models.

An optimization and data collection toolbox for convenient and fast prototyping of computationally expensive models. Hyperactive: is very easy to lear

Simon Blanke 422 Jan 04, 2023
3D ResNet Video Classification accelerated by TensorRT

Activity Recognition TensorRT Perform video classification using 3D ResNets trained on Kinetics-400 dataset and accelerated with TensorRT P.S Click on

Akash James 39 Nov 21, 2022
Bald-to-Hairy Translation Using CycleGAN

GANiry: Bald-to-Hairy Translation Using CycleGAN Official PyTorch implementation of GANiry. GANiry: Bald-to-Hairy Translation Using CycleGAN, Fidan Sa

Fidan Samet 10 Oct 27, 2022
Impelmentation for paper Feature Generation and Hypothesis Verification for Reliable Face Anti-Spoofing

FGHV Impelmentation for paper Feature Generation and Hypothesis Verification for Reliable Face Anti-Spoofing Requirements Python 3.6 Pytorch 1.5.0 Cud

5 Jun 02, 2022
1st ranked 'driver careless behavior detection' for AI Online Competition 2021, hosted by MSIT Korea.

2021AICompetition-03 λ³Έ repo λŠ” mAy-I Inc. νŒ€μœΌλ‘œ μ°Έκ°€ν•œ 2021 인곡지λŠ₯ 온라인 κ²½μ§„λŒ€νšŒ 쀑 [이미지] μš΄μ „ 사고 μ˜ˆλ°©μ„ μœ„ν•œ μš΄μ „μž λΆ€μ£Όμ˜ 행동 κ²€μΆœ λͺ¨λΈ] νƒœμŠ€ν¬ μˆ˜ν–‰μ„ μœ„ν•œ λ ˆν¬μ§€ν† λ¦¬μž…λ‹ˆλ‹€. mAy-I λŠ” κ³Όν•™κΈ°μˆ μ •λ³΄ν†΅μ‹ λΆ€κ°€ μ£Όμ΅œν•˜

Junhyuk Park 9 Dec 01, 2022
Toolchain to build Yoshi's Island from source code

Project-Y Toolchain to build Yoshi's Island (J) V1.0 from source code, by MrL314 Last updated: September 17, 2021 Setup To begin, download this toolch

MrL314 19 Apr 18, 2022
Evaluating saliency methods on artificial data with different background types

Evaluating saliency methods on artificial data with different background types This repository contains the relevant code for the MedNeurips 2021 subm

2 Jul 05, 2022
Adaptive Prototype Learning and Allocation for Few-Shot Segmentation (CVPR 2021)

ASGNet The code is for the paper "Adaptive Prototype Learning and Allocation for Few-Shot Segmentation" (accepted to CVPR 2021) [arxiv] Overview data/

Gen Li 91 Dec 23, 2022
Light-Head R-CNN

Light-head R-CNN Introduction We release code for Light-Head R-CNN. This is my best practice for my research. This repo is organized as follows: light

jemmy li 835 Dec 06, 2022
Cryptocurrency Prediction with Artificial Intelligence (Deep Learning via LSTM Neural Networks)

Cryptocurrency Prediction with Artificial Intelligence (Deep Learning via LSTM Neural Networks)- Emirhan BULUT

Emirhan BULUT 102 Nov 18, 2022
Diverse graph algorithms implemented using JGraphT library.

# 1. Installing Maven & Pandas First, please install Java (JDK11) and Python 3 if they are not already. Next, make sure that Maven (for importing J

See Woo Lee 3 Dec 17, 2022
An implementation of the Contrast Predictive Coding (CPC) method to train audio features in an unsupervised fashion.

CPC_audio This code implements the Contrast Predictive Coding algorithm on audio data, as described in the paper Unsupervised Pretraining Transfers we

8 Nov 14, 2022
TensorFlow 2 implementation of the Yahoo Open-NSFW model

TensorFlow 2 implementation of the Yahoo Open-NSFW model

Bosco Yung 101 Jan 01, 2023