Official source code of paper 'IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo'

Overview

IterMVS

official source code of paper 'IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo'

Introduction

IterMVS is a novel learning-based MVS method combining highest efficiency and competitive reconstruction quality. We propose a novel GRU-based estimator that encodes pixel-wise probability distributions of depth in its hidden state. Ingesting multi-scale matching information, our model refines these distributions over multiple iterations and infers depth and confidence. Extensive experiments on DTU, Tanks & Temples and ETH3D show highest efficiency in both memory and run-time, and a better generalization ability than many state-of-the-art learning-based methods.

If you find this project useful for your research, please cite:

@misc{wang2021itermvs,
      title={IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo}, 
      author={Fangjinhua Wang and Silvano Galliani and Christoph Vogel and Marc Pollefeys},
      year={2021},
      eprint={2112.05126},
      archivePrefix={arXiv},
      primaryClass={cs.CV}
}

Installation

Requirements

  • python 3.6
  • CUDA 10.1
pip install -r requirements.txt

Reproducing Results

root_directory
├──scan1 (scene_name1)
├──scan2 (scene_name2) 
      ├── images                 
      │   ├── 00000000.jpg       
      │   ├── 00000001.jpg       
      │   └── ...                
      ├── cams_1                   
      │   ├── 00000000_cam.txt   
      │   ├── 00000001_cam.txt   
      │   └── ...                
      └── pair.txt  

Camera file cam.txt stores the camera parameters, which includes extrinsic, intrinsic, minimum depth and maximum depth:

extrinsic
E00 E01 E02 E03
E10 E11 E12 E13
E20 E21 E22 E23
E30 E31 E32 E33

intrinsic
K00 K01 K02
K10 K11 K12
K20 K21 K22

DEPTH_MIN DEPTH_MAX 

pair.txt stores the view selection result. For each reference image, 10 best source views are stored in the file:

TOTAL_IMAGE_NUM
IMAGE_ID0                       # index of reference image 0 
10 ID0 SCORE0 ID1 SCORE1 ...    # 10 best source images for reference image 0 
IMAGE_ID1                       # index of reference image 1
10 ID0 SCORE0 ID1 SCORE1 ...    # 10 best source images for reference image 1 
...

Evaluation on DTU:

  • For DTU's evaluation set, first download our processed camera parameters from here. Unzip it and replace all the old camera files in the folders cams_1 with new files for all the scans.
  • In eval_dtu.sh, set DTU_TESTING as the root directory of corresponding dataset, set --outdir as the directory to store the reconstructed point clouds.
  • CKPT_FILE is the path of checkpoint file (default as our pretrained model which is trained on DTU, the path is checkpoints/dtu/model_000015.ckpt).
  • Test on GPU by running bash eval_dtu.sh. The code includes depth map estimation and depth fusion. The outputs are the point clouds in ply format.
  • For quantitative evaluation, download SampleSet and Points from DTU's website. Unzip them and place Points folder in SampleSet/MVS Data/. The structure looks like:
SampleSet
├──MVS Data
      └──Points

In evaluations/dtu/BaseEvalMain_web.m, set dataPath as the path to SampleSet/MVS Data/, plyPath as directory that stores the reconstructed point clouds and resultsPath as directory to store the evaluation results. Then run evaluations/dtu/BaseEvalMain_web.m in matlab.

The results look like:

Acc. (mm) Comp. (mm) Overall (mm)
0.373 0.354 0.363

Evaluation on Tansk & Temples:

  • In eval_tanks.sh, set TANK_TESTING as the root directory of the dataset and --outdir as the directory to store the reconstructed point clouds.
  • CKPT_FILE is the path of checkpoint file (default as our pretrained model which is trained on DTU, the path is checkpoints/dtu/model_000015.ckpt). We also provide our pretrained model trained on BlendedMVS (checkpoints/blendedmvs/model_000015.ckpt)
  • Test on GPU by running bash eval_tanks.sh. The code includes depth map estimation and depth fusion. The outputs are the point clouds in ply format.
  • For our detailed quantitative results on Tanks & Temples, please check the leaderboards (Tanks & Temples: trained on DTU, Tanks & Temples: trained on BlendedMVS).

Evaluation on ETH3D:

  • In eval_eth.sh, set ETH3D_TESTING as the root directory of the dataset and --outdir as the directory to store the reconstructed point clouds.
  • CKPT_FILE is the path of checkpoint file (default as our pretrained model which is trained on DTU, the path is checkpoints/dtu/model_000015.ckpt). We also provide our pretrained model trained on BlendedMVS (checkpoints/blendedmvs/model_000015.ckpt)
  • Test on GPU by running bash eval_eth.sh. The code includes depth map estimation and depth fusion. The outputs are the point clouds in ply format.
  • For our detailed quantitative results on ETH3D, please check the leaderboards (ETH3D: trained on DTU, ETH3D: trained on BlendedMVS).

Evaluation on custom dataset:

  • We support preparing the custom dataset from COLMAP's results. The script colmap_input.py (modified based on the script from MVSNet) converts COLMAP's sparse reconstruction results into the same format as the datasets that we provide.
  • Test on GPU by running bash eval_custom.sh.

Training

DTU

  • Download pre-processed DTU's training set (provided by PatchmatchNet). The dataset is already organized as follows:
root_directory
├──Cameras_1
├──Rectified
└──Depths_raw
  • Download our processed camera parameters from here. Unzip all the camera folders into root_directory/Cameras_1.
  • In train_dtu.sh, set MVS_TRAINING as the root directory of dataset; set --logdir as the directory to store the checkpoints.
  • Train the model by running bash train_dtu.sh.

BlendedMVS

  • Download the dataset.
  • In train_blend.sh, set MVS_TRAINING as the root directory of dataset; set --logdir as the directory to store the checkpoints.
  • Train the model by running bash train_blend.sh.

Acknowledgements

Thanks to Yao Yao for opening source of his excellent work MVSNet. Thanks to Xiaoyang Guo for opening source of his PyTorch implementation of MVSNet MVSNet-pytorch.

Owner
Fangjinhua Wang
Ph.D. sutdent in Computer Science; member of CVG; supervised by Prof. Marc Pollefeys
Fangjinhua Wang
Simple converter for deploying Stable-Baselines3 model to TFLite and/or Coral

Running SB3 developed agents on TFLite or Coral Introduction I've been using Stable-Baselines3 to train agents against some custom Gyms, some of which

Gary Briggs 16 Oct 11, 2022
Seeing All the Angles: Learning Multiview Manipulation Policies for Contact-Rich Tasks from Demonstrations

Seeing All the Angles: Learning Multiview Manipulation Policies for Contact-Rich Tasks from Demonstrations Trevor Ablett, Daniel (Yifan) Zhai, Jonatha

STARS Laboratory 3 Feb 01, 2022
All the essential resources and template code needed to understand and practice data structures and algorithms in python with few small projects to demonstrate their practical application.

Data Structures and Algorithms Python INDEX 1. Resources - Books Data Structures - Reema Thareja competitiveCoding Big-O Cheat Sheet DAA Syllabus Inte

Shushrut Kumar 129 Dec 15, 2022
Codebase for the paper titled "Continual learning with local module selection"

This repository contains the codebase for the paper Continual Learning via Local Module Composition. Setting up the environemnt Create a new conda env

Oleksiy Ostapenko 20 Dec 10, 2022
An atmospheric growth and evolution model based on the EVo degassing model and FastChem 2.0

EVolve Linking planetary mantles to atmospheric chemistry through volcanism using EVo and FastChem. Overview EVolve is a linked mantle degassing and a

Pip Liggins 2 Jan 17, 2022
Code for KDD'20 "An Efficient Neighborhood-based Interaction Model for Recommendation on Heterogeneous Graph"

Heterogeneous INteract and aggreGatE (GraphHINGE) This is a pytorch implementation of GraphHINGE model. This is the experiment code in the following w

Jinjiarui 69 Nov 24, 2022
Real-time object detection on Android using the YOLO network with TensorFlow

TensorFlow YOLO object detection on Android Source project android-yolo is the first implementation of YOLO for TensorFlow on an Android device. It is

Nataniel Ruiz 624 Jan 03, 2023
Build a small, 3 domain internet using Github pages and Wikipedia and construct a crawler to crawl, render, and index.

TechSEO Crawler Build a small, 3 domain internet using Github pages and Wikipedia and construct a crawler to crawl, render, and index. Play with the r

JR Oakes 57 Nov 24, 2022
Deep Networks with Recurrent Layer Aggregation

RLA-Net: Recurrent Layer Aggregation Recurrence along Depth: Deep Networks with Recurrent Layer Aggregation This is an implementation of RLA-Net (acce

Joy Fang 21 Aug 16, 2022
Contrastive unpaired image-to-image translation, faster and lighter training than cyclegan (ECCV 2020, in PyTorch)

Contrastive Unpaired Translation (CUT) video (1m) | video (10m) | website | paper We provide our PyTorch implementation of unpaired image-to-image tra

1.7k Dec 27, 2022
Face recognition with trained classifiers for detecting objects using OpenCV

Face_Detector Face recognition with trained classifiers for detecting objects using OpenCV Libraries required to be installed using pip Command: cv2 n

Chumui Tripura 0 Oct 31, 2021
Code for ACM MM2021 paper "Complementary Trilateral Decoder for Fast and Accurate Salient Object Detection"

CTDNet The PyTorch code for ACM MM2021 paper "Complementary Trilateral Decoder for Fast and Accurate Salient Object Detection" Requirements Python 3.6

CVTEAM 28 Oct 20, 2022
Datasets and source code for our paper Webly Supervised Fine-Grained Recognition: Benchmark Datasets and An Approach

Introduction Datasets and source code for our paper Webly Supervised Fine-Grained Recognition: Benchmark Datasets and An Approach Datasets: WebFG-496

21 Sep 30, 2022
Official implementation of our paper "LLA: Loss-aware Label Assignment for Dense Pedestrian Detection" in Pytorch.

LLA: Loss-aware Label Assignment for Dense Pedestrian Detection This project provides an implementation for "LLA: Loss-aware Label Assignment for Dens

35 Dec 06, 2022
YOLOX_AUDIO is an audio event detection model based on YOLOX

YOLOX_AUDIO is an audio event detection model based on YOLOX, an anchor-free version of YOLO. This repo is an implementated by PyTorch. Main goal of YOLOX_AUDIO is to detect and classify pre-defined

intflow Inc. 77 Dec 19, 2022
Towards Rolling Shutter Correction and Deblurring in Dynamic Scenes (CVPR2021)

RSCD (BS-RSCD & JCD) Towards Rolling Shutter Correction and Deblurring in Dynamic Scenes (CVPR2021) by Zhihang Zhong, Yinqiang Zheng, Imari Sato We co

81 Dec 15, 2022
Artstation-Artistic-face-HQ Dataset (AAHQ)

Artstation-Artistic-face-HQ Dataset (AAHQ) Artstation-Artistic-face-HQ (AAHQ) is a high-quality image dataset of artistic-face images. It is proposed

onion 105 Dec 16, 2022
SustainBench: Benchmarks for Monitoring the Sustainable Development Goals with Machine Learning

Datasets | Website | Raw Data | OpenReview SustainBench: Benchmarks for Monitoring the Sustainable Development Goals with Machine Learning Christopher

67 Dec 17, 2022
[ICML 2020] "When Does Self-Supervision Help Graph Convolutional Networks?" by Yuning You, Tianlong Chen, Zhangyang Wang, Yang Shen

When Does Self-Supervision Help Graph Convolutional Networks? PyTorch implementation for When Does Self-Supervision Help Graph Convolutional Networks?

Shen Lab at Texas A&M University 106 Nov 11, 2022
Implementation of H-Transformer-1D, Hierarchical Attention for Sequence Learning using 🤗 transformers

hierarchical-transformer-1d Implementation of H-Transformer-1D, Hierarchical Attention for Sequence Learning using 🤗 transformers In Progress!! 2021.

MyungHoon Jin 7 Nov 06, 2022