Implementing DropPath/StochasticDepth in PyTorch

Related tags

Deep LearningDropPath
Overview
%load_ext memory_profiler

Implementing Stochastic Depth/Drop Path In PyTorch

DropPath is available on glasses my computer vision library!

Introduction

Today we are going to implement Stochastic Depth also known as Drop Path in PyTorch! Stochastic Depth introduced by Gao Huang et al is technique to "deactivate" some layers during training.

Let's take a look at a normal ResNet Block that uses residual connections (like almost all models now).If you are not familiar with ResNet, I have an article showing how to implement it.

Basically, the block's output is added to its input: output = block(input) + input. This is called a residual connection

alt

Here we see four ResnNet like blocks, one after the other.

alt

Stochastic Depth/Drop Path will deactivate some of the block's weight

alt

The idea is to reduce the number of layers/block used during training, saving time and make the network generalize better.

Practically, this means setting to zero the output of the block before adding.

Implementation

Let's start by importing our best friend, torch.

import torch
from torch import nn
from torch import Tensor

We can define a 4D tensor (batch x channels x height x width), in our case let's just send 4 images with one pixel each :)

x = torch.ones((4, 1, 1, 1))

We need a tensor of shape batch x 1 x 1 x 1 that will be used to set some of the elements in the batch to zero, using a given prob. Bernoulli to the rescue!

keep_prob: float = .5
mask: Tensor = x.new_empty(x.shape[0], 1, 1, 1).bernoulli_(keep_prob)
    
mask
tensor([[[[0.]]],


        [[[1.]]],


        [[[1.]]],


        [[[1.]]]])

Btw, this is equivelant to

mask: Tensor = (torch.rand(x.shape[0], 1, 1, 1) > keep_prob).float()
mask
tensor([[[[1.]]],


        [[[1.]]],


        [[[1.]]],


        [[[1.]]]])

Before we multiply x by the mask we need to divide x by keep_prob to rescale down the inputs activation during training, see cs231n. So

x_scaled : Tensor = x / keep_prob
x_scaled
tensor([[[[2.]]],


        [[[2.]]],


        [[[2.]]],


        [[[2.]]]])

Finally

output: Tensor = x_scaled * mask
output
tensor([[[[2.]]],


        [[[2.]]],


        [[[2.]]],


        [[[2.]]]])

We can put together in a function

def drop_path(x: Tensor, keep_prob: float = 1.0) -> Tensor:
    mask: Tensor = x.new_empty(x.shape[0], 1, 1, 1).bernoulli_(keep_prob)
    x_scaled: Tensor = x / keep_prob
    return x_scaled * mask

drop_path(x, keep_prob=0.5)
tensor([[[[0.]]],


        [[[0.]]],


        [[[2.]]],


        [[[0.]]]])

We can also do the operation in place

def drop_path(x: Tensor, keep_prob: float = 1.0) -> Tensor:
    mask: Tensor = x.new_empty(x.shape[0], 1, 1, 1).bernoulli_(keep_prob)
    x.div_(keep_prob)
    x.mul_(mask)
    return x


drop_path(x, keep_prob=0.5)
tensor([[[[2.]]],


        [[[2.]]],


        [[[0.]]],


        [[[0.]]]])

However, we may want to use x somewhere else, and dividing x or mask by keep_prob is the same thing. Let's arrive at the final implementation

def drop_path(x: Tensor, keep_prob: float = 1.0, inplace: bool = False) -> Tensor:
    mask: Tensor = x.new_empty(x.shape[0], 1, 1, 1).bernoulli_(keep_prob)
    mask.div_(keep_prob)
    if inplace:
        x.mul_(mask)
    else:
        x = x * mask
    return x

x = torch.ones((4, 1, 1, 1))
drop_path(x, keep_prob=0.8)
tensor([[[[1.2500]]],


        [[[1.2500]]],


        [[[1.2500]]],


        [[[1.2500]]]])

drop_path only works for 2d data, we need to automatically calculate the number of dimensions from the input size to make it work for any data time

def drop_path(x: Tensor, keep_prob: float = 1.0, inplace: bool = False) -> Tensor:
    mask_shape: Tuple[int] = (x.shape[0],) + (1,) * (x.ndim - 1) 
    # remember tuples have the * operator -> (1,) * 3 = (1,1,1)
    mask: Tensor = x.new_empty(mask_shape).bernoulli_(keep_prob)
    mask.div_(keep_prob)
    if inplace:
        x.mul_(mask)
    else:
        x = x * mask
    return x

x = torch.ones((4, 1))
drop_path(x, keep_prob=0.8)
tensor([[0.],
        [0.],
        [0.],
        [0.]])

Let's create a nice DropPath nn.Module

class DropPath(nn.Module):
    def __init__(self, p: float = 0.5, inplace: bool = False):
        super().__init__()
        self.p = p
        self.inplace = inplace

    def forward(self, x: Tensor) -> Tensor:
        if self.training and self.p > 0:
            x = drop_path(x, self.p, self.inplace)
        return x

    def __repr__(self):
        return f"{self.__class__.__name__}(p={self.p})"

    
DropPath()(torch.ones((4, 1)))
tensor([[2.],
        [0.],
        [0.],
        [0.]])

Usage with Residual Connections

We have our DropPath, cool but how do we use it? We need a classic ResNet block, let's implement our good old friend BottleNeckBlock

from torch import nn


class ConvBnAct(nn.Sequential):
    def __init__(self, in_features: int, out_features: int, kernel_size=1):
        super().__init__(
            nn.Conv2d(in_features, out_features, kernel_size=kernel_size, padding=kernel_size // 2),
            nn.BatchNorm2d(out_features),
            nn.ReLU()
        )
         

class BottleNeck(nn.Module):
    def __init__(self, in_features: int, out_features: int, reduction: int = 4):
        super().__init__()
        self.block = nn.Sequential(
            # wide -> narrow
            ConvBnAct(in_features, out_features // reduction, kernel_size=1),
            # narrow -> narrow
            ConvBnAct( out_features // reduction, out_features // reduction, kernel_size=3),
            # wide -> narrow
            ConvBnAct( out_features // reduction, out_features, kernel_size=1),
        )
        # I am lazy, no shortcut etc
        
    def forward(self, x: Tensor) -> Tensor:
        res = x
        x = self.block(x)
        return x + res
    
    
BottleNeck(64, 64)(torch.ones((1,64, 28, 28))).shape
torch.Size([1, 64, 28, 28])

To deactivate the block the operation x + res must be equal to res, so our DropPath has to be applied after the block.

class BottleNeck(nn.Module):
    def __init__(self, in_features: int, out_features: int, reduction: int = 4):
        super().__init__()
        self.block = nn.Sequential(
            # wide -> narrow
            ConvBnAct(in_features, out_features // reduction, kernel_size=1),
            # narrow -> narrow
            ConvBnAct( out_features // reduction, out_features // reduction, kernel_size=3),
            # wide -> narrow
            ConvBnAct( out_features // reduction, out_features, kernel_size=1),
        )
        # I am lazy, no shortcut etc
        self.drop_path = DropPath()
        
    def forward(self, x: Tensor) -> Tensor:
        res = x
        x = self.block(x)
        x = self.drop_path(x)
        return x + res
    
BottleNeck(64, 64)(torch.ones((1,64, 28, 28)))
tensor([[[[1.0009, 1.0000, 1.0000,  ..., 1.0000, 1.0000, 1.0000],
          [1.0134, 1.0034, 1.0034,  ..., 1.0034, 1.0034, 1.0000],
          [1.0134, 1.0034, 1.0034,  ..., 1.0034, 1.0034, 1.0000],
          ...,
          [1.0134, 1.0034, 1.0034,  ..., 1.0034, 1.0034, 1.0000],
          [1.0134, 1.0034, 1.0034,  ..., 1.0034, 1.0034, 1.0000],
          [1.0000, 1.0000, 1.0000,  ..., 1.0000, 1.0000, 1.0000]],

         [[1.0005, 1.0000, 1.0000,  ..., 1.0000, 1.0000, 1.0000],
          [1.0000, 1.0000, 1.0000,  ..., 1.0000, 1.0000, 1.0421],
          [1.0000, 1.0000, 1.0000,  ..., 1.0000, 1.0000, 1.0421],
          ...,
          [1.0000, 1.0000, 1.0000,  ..., 1.0000, 1.0000, 1.0421],
          [1.0000, 1.0000, 1.0000,  ..., 1.0000, 1.0000, 1.0421],
          [1.0000, 1.0011, 1.0011,  ..., 1.0011, 1.0011, 1.0247]],

         [[1.0203, 1.0123, 1.0123,  ..., 1.0123, 1.0123, 1.0299],
          [1.0000, 1.0005, 1.0005,  ..., 1.0005, 1.0005, 1.0548],
          [1.0000, 1.0005, 1.0005,  ..., 1.0005, 1.0005, 1.0548],
          ...,
          [1.0000, 1.0005, 1.0005,  ..., 1.0005, 1.0005, 1.0548],
          [1.0000, 1.0005, 1.0005,  ..., 1.0005, 1.0005, 1.0548],
          [1.0000, 1.0000, 1.0000,  ..., 1.0000, 1.0000, 1.0000]],

         ...,

         [[1.0011, 1.0180, 1.0180,  ..., 1.0180, 1.0180, 1.0465],
          [1.0000, 1.0000, 1.0000,  ..., 1.0000, 1.0000, 1.0245],
          [1.0000, 1.0000, 1.0000,  ..., 1.0000, 1.0000, 1.0245],
          ...,
          [1.0000, 1.0000, 1.0000,  ..., 1.0000, 1.0000, 1.0245],
          [1.0000, 1.0000, 1.0000,  ..., 1.0000, 1.0000, 1.0245],
          [1.0000, 1.0000, 1.0000,  ..., 1.0000, 1.0000, 1.0000]],

         [[1.0130, 1.0170, 1.0170,  ..., 1.0170, 1.0170, 1.0213],
          [1.0052, 1.0000, 1.0000,  ..., 1.0000, 1.0000, 1.0065],
          [1.0052, 1.0000, 1.0000,  ..., 1.0000, 1.0000, 1.0065],
          ...,
          [1.0052, 1.0000, 1.0000,  ..., 1.0000, 1.0000, 1.0065],
          [1.0052, 1.0000, 1.0000,  ..., 1.0000, 1.0000, 1.0065],
          [1.0012, 1.0139, 1.0139,  ..., 1.0139, 1.0139, 1.0065]],

         [[1.0103, 1.0181, 1.0181,  ..., 1.0181, 1.0181, 1.0539],
          [1.0001, 1.0016, 1.0016,  ..., 1.0016, 1.0016, 1.0231],
          [1.0001, 1.0016, 1.0016,  ..., 1.0016, 1.0016, 1.0231],
          ...,
          [1.0001, 1.0016, 1.0016,  ..., 1.0016, 1.0016, 1.0231],
          [1.0001, 1.0016, 1.0016,  ..., 1.0016, 1.0016, 1.0231],
          [1.0000, 1.0000, 1.0000,  ..., 1.0000, 1.0000, 1.0000]]]],
       grad_fn=<AddBackward0>)

Tada 🎉 ! Now, randomly, our .block will be completely skipped!


Owner
Francesco Saverio Zuppichini
Computer Vision Engineer @ 🤗 BSc informatics. MSc AI. Artificial Intelligence /Deep Learning Enthusiast & Full Stack developer
Francesco Saverio Zuppichini
Repository aimed at compiling code, papers, demos etc.. related to my PhD on 3D vision and machine learning for fruit detection and shape estimation at the university of Lincoln

PhD_3DPerception Repository aimed at compiling code, papers, demos etc.. related to my PhD on 3D vision and machine learning for fruit detection and s

lelouedec 2 Oct 06, 2022
Neural network for digit classification powered by cuda

cuda_nn_mnist Neural network library for digit classification powered by cuda Resources The library was built to work with MNIST dataset. python-mnist

Nikita Ardashev 1 Dec 20, 2021
Object recognition using Azure Custom Vision AI and Azure Functions

Step by Step on how to create an object recognition model using Custom Vision, export the model and run the model in an Azure Function

El Bruno 11 Jul 08, 2022
NALSM: Neuron-Astrocyte Liquid State Machine

NALSM: Neuron-Astrocyte Liquid State Machine This package is a Tensorflow implementation of the Neuron-Astrocyte Liquid State Machine (NALSM) that int

Computational Brain Lab 4 Nov 28, 2022
MixRNet(Using mixup as regularization and tuning hyper-parameters for ResNets)

MixRNet(Using mixup as regularization and tuning hyper-parameters for ResNets) Using mixup data augmentation as reguliraztion and tuning the hyper par

Bhanu 2 Jan 16, 2022
Official code repository for "Exploring Neural Models for Query-Focused Summarization"

Query-Focused Summarization Official code repository for "Exploring Neural Models for Query-Focused Summarization" This is a work in progress. Expect

Salesforce 29 Dec 18, 2022
A web-based application for quick, scalable, and automated hyperparameter tuning and stacked ensembling in Python.

Xcessiv Xcessiv is a tool to help you create the biggest, craziest, and most excessive stacked ensembles you can think of. Stacked ensembles are simpl

Reiichiro Nakano 1.3k Nov 17, 2022
We present a framework for training multi-modal deep learning models on unlabelled video data by forcing the network to learn invariances to transformations applied to both the audio and video streams.

Multi-Modal Self-Supervision using GDT and StiCa This is an official pytorch implementation of papers: Multi-modal Self-Supervision from Generalized D

Facebook Research 42 Dec 09, 2022
In-place Parallel Super Scalar Samplesort (IPS⁴o)

In-place Parallel Super Scalar Samplesort (IPS⁴o) This is the implementation of the algorithm IPS⁴o presented in the paper Engineering In-place (Share

82 Dec 22, 2022
Repository features UNet inspired architecture used for segmenting lungs on chest X-Ray images

Lung Segmentation (2D) Repository features UNet inspired architecture used for segmenting lungs on chest X-Ray images. Demo See the application of the

163 Sep 21, 2022
Code to reproduce the results for Statistically Robust Neural Network Classification, published in UAI 2021

Code to reproduce the results for Statistically Robust Neural Network Classification, published in UAI 2021

1 Jun 02, 2022
The official implementation of the Interspeech 2021 paper WSRGlow: A Glow-based Waveform Generative Model for Audio Super-Resolution.

WSRGlow The official implementation of the Interspeech 2021 paper WSRGlow: A Glow-based Waveform Generative Model for Audio Super-Resolution. Audio sa

Kexun Zhang 96 Jan 03, 2023
RuDOLPH: One Hyper-Modal Transformer can be creative as DALL-E and smart as CLIP

[Paper] [Хабр] [Model Card] [Colab] [Kaggle] RuDOLPH 🦌 🎄 ☃️ One Hyper-Modal Tr

Sber AI 230 Dec 31, 2022
Peek-a-Boo: What (More) is Disguised in a Randomly Weighted Neural Network, and How to Find It Efficiently

Peek-a-Boo: What (More) is Disguised in a Randomly Weighted Neural Network, and How to Find It Efficiently This repository is the official implementat

VITA 4 Dec 20, 2022
The openspoor package is intended to allow easy transformation between different geographical and topological systems commonly used in Dutch Railway

Openspoor The openspoor package is intended to allow easy transformation between different geographical and topological systems commonly used in Dutch

7 Aug 22, 2022
Implementation of the ivis algorithm as described in the paper Structure-preserving visualisation of high dimensional single-cell datasets.

Implementation of the ivis algorithm as described in the paper Structure-preserving visualisation of high dimensional single-cell datasets.

beringresearch 285 Jan 04, 2023
RATCHET is a Medical Transformer for Chest X-ray Diagnosis and Reporting

RATCHET: RAdiological Text Captioning for Human Examined Thoraxes RATCHET is a Medical Transformer for Chest X-ray Diagnosis and Reporting. Based on t

26 Nov 14, 2022
Text to Image Generation with Semantic-Spatial Aware GAN

text2image This repository includes the implementation for Text to Image Generation with Semantic-Spatial Aware GAN This repo is not completely. Netwo

CVDDL 124 Dec 30, 2022
An Open-Source Tool for Automatic Disease Diagnosis..

OpenMedicalChatbox An Open-Source Package for Automatic Disease Diagnosis. Overview Due to the lack of open source for existing RL-base automated diag

8 Nov 08, 2022
Code for the USENIX 2017 paper: kAFL: Hardware-Assisted Feedback Fuzzing for OS Kernels

kAFL: Hardware-Assisted Feedback Fuzzing for OS Kernels Blazing fast x86-64 VM kernel fuzzing framework with performant VM reloads for Linux, MacOS an

Chair for Sys­tems Se­cu­ri­ty 541 Nov 27, 2022