FID calculation with proper image resizing and quantization steps

Overview

clean-fid: Fixing Inconsistencies in FID


Project | Paper

The FID calculation involves many steps that can produce inconsistencies in the final metric. As shown below, different implementations use different low-level image quantization and resizing functions, the latter of which are often implemented incorrectly.

We provide an easy-to-use library to address the above issues and make the FID scores comparable across different methods, papers, and groups.

FID Steps


On Buggy Resizing Libraries and Surprising Subtleties in FID Calculation
Gaurav Parmar, Richard Zhang, Jun-Yan Zhu
arXiv 2104.11222, 2021
CMU and Adobe



Buggy Resizing Operations

The definitions of resizing functions are mathematical and should never be a function of the library being used. Unfortunately, implementations differ across commonly-used libraries. They are often implemented incorrectly by popular libraries.


The inconsistencies among implementations can have a drastic effect of the evaluations metrics. The table below shows that FFHQ dataset images resized with bicubic implementation from other libraries (OpenCV, PyTorch, TensorFlow, OpenCV) have a large FID score (≥ 6) when compared to the same images resized with the correctly implemented PIL-bicubic filter. Other correctly implemented filters from PIL (Lanczos, bilinear, box) all result in relatively smaller FID score (≤ 0.75).

JPEG Image Compression

Image compression can have a surprisingly large effect on FID. Images are perceptually indistinguishable from each other but have a large FID score. The FID scores under the images are calculated between all FFHQ images saved using the corresponding JPEG format and the PNG format.

Below, we study the effect of JPEG compression for StyleGAN2 models trained on the FFHQ dataset (left) and LSUN outdoor Church dataset (right). Note that LSUN dataset images were collected with JPEG compression (quality 75), whereas FFHQ images were collected as PNG. Interestingly, for LSUN dataset, the best FID score (3.48) is obtained when the generated images are compressed with JPEG quality 87.


Quick Start

  • install requirements

    pip install -r requirements.txt
    
  • install the library

    pip install clean-fid
    
  • Compute FID between two image folders

    from cleanfid import fid
    
    score = fid.compute_fid(fdir1, fdir2)
    
  • Compute FID between one folder of images and pre-computed datasets statistics (e.g., FFHQ)

    from cleanfid import fid
    
    score = fid.compute_fid(fdir1, dataset_name="FFHQ", dataset_res=1024)
    
    
  • Compute FID using a generative model and pre-computed dataset statistics:

    from cleanfid import fid
    
    # function that accepts a latent and returns an image in range[0,255]
    gen = lambda z: GAN(latent=z, ... , <other_flags>)
    
    score = fid.compute_fid(gen=gen, dataset_name="FFHQ",
            dataset_res=256, num_gen=50_000)
    
    

Supported Precomputed Datasets

We provide precompute statistics for the following configurations

Task Dataset Resolution split mode
Image Generation FFHQ 256,1024 train+val clean, legacy_pytorch, legacy_tensorflow
Image Generation LSUN Outdoor Churches 256 train clean, legacy_pytorch, legacy_tensorflow
Image to Image horse2zebra 128,256 train, test, train+test clean, legacy_pytorch, legacy_tensorflow

Using precomputed statistics In order to compute the FID score with the precomputed dataset statistics, use the corresponding options. For instance, to compute the clean-fid score on generated 256x256 FFHQ images use the command:

fid_score = fid.compute_fid(fdir1, dataset_name="FFHQ", dataset_res=256,  mode="clean")

Create Custom Dataset Statistics

  • dataset_path: folder where the dataset images are stored
  • Generate and save the inception statistics
    import numpy as np
    from cleanfid import fid
    dataset_path = ...
    feat = fid.get_folder_features(dataset_path, num=50_000)
    mu = np.mean(feats, axis=0)
    sigma = np.cov(feats, rowvar=False)
    np.savez_compressed("stats.npz", mu=mu, sigma=sigma)
    

Backwards Compatibility

We provide two flags to reproduce the legacy FID score.

  • mode="legacy_pytorch"
    This flag is equivalent to using the popular PyTorch FID implementation provided here
    The difference between using clean-fid with this option and code is ~1.9e-06
    See doc for how the methods are compared

  • mode="legacy_tensorflow"
    This flag is equivalent to using the official implementation of FID released by the authors. To use this flag, you need to additionally install tensorflow. The tensorflow cuda version may cause issues with the pytorch code. I have tested this with TensorFlow-cpu 2.2 (`pip install tensorflow-cpu==2.2)


CleanFID Leaderboard for common tasks


FFHQ @ 1024x1024

Model Legacy-FID Clean-FID
StyleGAN2 2.85 ± 0.05 3.08 ± 0.05
StyleGAN 4.44 ± 0.04 4.82 ± 0.04
MSG-GAN 6.09 ± 0.04 6.58 ± 0.06

Image-to-Image (horse->zebra @ 256x256) Computed using test images

Model Legacy-FID Clean-FID
CycleGAN 77.20 75.17
CUT 45.51 43.71

Building from source

python setup.py bdist_wheel
pip install dist/*

Citation

If you find this repository useful for your research, please cite the following work.

@article{parmar2021cleanfid,
  title={On Buggy Resizing Libraries and Surprising Subtleties in FID Calculation},
  author={Parmar, Gaurav and Zhang, Richard and Zhu, Jun-Yan},
  journal={arXiv preprint arXiv:2104.11222},
  year={2021}
}

Credits

PyTorch-StyleGAN2: code | License

PyTorch-FID: code | License

StyleGAN2: code | LICENSE

converted FFHQ weights: code | License

EMNLP 2021: Single-dataset Experts for Multi-dataset Question-Answering

MADE (Multi-Adapter Dataset Experts) This repository contains the implementation of MADE (Multi-adapter dataset experts), which is described in the pa

Princeton Natural Language Processing 68 Jul 18, 2022
BESS: Balanced Evolutionary Semi-Stacking for Disease Detection via Partially Labeled Imbalanced Tongue Data

Balanced-Evolutionary-Semi-Stacking Code for the paper ''BESS: Balanced Evolutionary Semi-Stacking for Disease Detection via Partially Labeled Imbalan

0 Jan 16, 2022
Planar Prior Assisted PatchMatch Multi-View Stereo

ACMP [News] The code for ACMH is released!!! [News] The code for ACMM is released!!! About This repository contains the code for the paper Planar Prio

Qingshan Xu 127 Dec 31, 2022
Code release for BlockGAN: Learning 3D Object-aware Scene Representations from Unlabelled Images

BlockGAN Code release for BlockGAN: Learning 3D Object-aware Scene Representations from Unlabelled Images BlockGAN: Learning 3D Object-aware Scene Rep

41 May 18, 2022
TCPNet - Temporal-attentive-Covariance-Pooling-Networks-for-Video-Recognition

Temporal-attentive-Covariance-Pooling-Networks-for-Video-Recognition This is an implementation of TCPNet. Introduction For video recognition task, a g

Zilin Gao 21 Dec 08, 2022
PyTorch code for: Learning to Generate Grounded Visual Captions without Localization Supervision

Learning to Generate Grounded Visual Captions without Localization Supervision This is the PyTorch implementation of our paper: Learning to Generate G

Chih-Yao Ma 41 Nov 17, 2022
This repo contains the implementation of YOLOv2 in Keras with Tensorflow backend.

Easy training on custom dataset. Various backends (MobileNet and SqueezeNet) supported. A YOLO demo to detect raccoon run entirely in brower is accessible at https://git.io/vF7vI (not on Windows).

Huynh Ngoc Anh 1.7k Dec 24, 2022
Pytorch library for seismic data augmentation

Pytorch library for seismic data augmentation

Artemii Novoselov 27 Nov 22, 2022
Free like Freedom

This is all very much a work in progress! More to come! ( We're working on it though! Stay tuned!) Installation Open an Anaconda Prompt (in Windows, o

2.3k Jan 04, 2023
Official Repo for ICCV2021 Paper: Learning to Regress Bodies from Images using Differentiable Semantic Rendering

[ICCV2021] Learning to Regress Bodies from Images using Differentiable Semantic Rendering Getting Started DSR has been implemented and tested on Ubunt

Sai Kumar Dwivedi 83 Nov 27, 2022
Generative Adversarial Text-to-Image Synthesis

###Generative Adversarial Text-to-Image Synthesis Scott Reed, Zeynep Akata, Xinchen Yan, Lajanugen Logeswaran, Bernt Schiele, Honglak Lee This is the

Scott Ellison Reed 883 Dec 31, 2022
Genpass - A Passwors Generator App With Python3

Genpass Welcom again into another python3 App this is simply an Passwors Generat

Mal4D 1 Jan 09, 2022
Code of Periodic Activation Functions Induce Stationarity

Periodic Activation Functions Induce Stationarity This repository is the official implementation of the methods in the publication: L. Meronen, M. Tra

AaltoML 12 Jun 07, 2022
A PyTorch Library for Accelerating 3D Deep Learning Research

Kaolin: A Pytorch Library for Accelerating 3D Deep Learning Research Overview NVIDIA Kaolin library provides a PyTorch API for working with a variety

NVIDIA GameWorks 3.5k Jan 07, 2023
Code and data of the EMNLP 2021 paper "Mind the Style of Text! Adversarial and Backdoor Attacks Based on Text Style Transfer"

StyleAttack Code and data of the EMNLP 2021 paper "Mind the Style of Text! Adversarial and Backdoor Attacks Based on Text Style Transfer" Prepare Pois

THUNLP 19 Nov 20, 2022
FFCV: Fast Forward Computer Vision (and other ML workloads!)

Fast Forward Computer Vision: train models at a fraction of the cost with accele

FFCV 2.3k Jan 03, 2023
scikit-learn inspired API for CRFsuite

sklearn-crfsuite sklearn-crfsuite is a thin CRFsuite (python-crfsuite) wrapper which provides interface simlar to scikit-learn. sklearn_crfsuite.CRF i

417 Dec 20, 2022
SOTR: Segmenting Objects with Transformers [ICCV 2021]

SOTR: Segmenting Objects with Transformers [ICCV 2021] By Ruohao Guo, Dantong Niu, Liao Qu, Zhenbo Li Introduction This is the official implementation

186 Dec 20, 2022
PyTorch implementation of "Debiased Visual Question Answering from Feature and Sample Perspectives" (NeurIPS 2021)

D-VQA We provide the PyTorch implementation for Debiased Visual Question Answering from Feature and Sample Perspectives (NeurIPS 2021). Dependencies P

Zhiquan Wen 19 Dec 22, 2022
Bayesian Deep Learning and Deep Reinforcement Learning for Object Shape Error Response and Correction of Manufacturing Systems

Bayesian Deep Learning for Manufacturing 2.0 (dlmfg) Object Shape Error Response (OSER) Digital Lifecycle Management - In Process Quality Improvement

Sumit Sinha 30 Oct 31, 2022