Skforecast is a python library that eases using scikit-learn regressors as multi-step forecasters

Overview

Maintenance Lifecycle Python Licence Downloads PyPI

skforecast

logo-skforecast

Time series forecasting with scikit-learn regressors.

Skforecast is a python library that eases using scikit-learn regressors as multi-step forecasters. It also works with any regressor compatible with the scikit-learn API (pipelines, CatBoost, LightGBM, XGBoost, Ranger...).

Documentation: https://joaquinamatrodrigo.github.io/skforecast/

Version 0.4 has undergone a huge code refactoring. Main changes are related to input-output formats (only pandas series and dataframes are allowed although internally numpy arrays are used for performance) and model validation methods (unified into backtesting with and without refit). Changelog

Table of contents

Installation

pip install skforecast

Specific version:

pip install skforecast==0.4.1

Latest (unstable):

pip install git+https://github.com/JoaquinAmatRodrigo/skforecast#master

The most common error when importing the library is:

'cannot import name 'mean_absolute_percentage_error' from 'sklearn.metrics'.

This is because the scikit-learn installation is lower than 0.24. Try to upgrade scikit-learn with

pip3 install -U scikit-learn

There is a current problem when installing statsmodels 0.13 in Google Colab. To avoid this dependency issues when installing skforecast:

pip install statsmodels==0.12.2
pip install skforecast

Dependencies

  • numpy>=1.20.1
  • pandas>=1.2.2
  • tqdm>=4.57.0
  • scikit-learn>=1.0.1
  • statsmodels>=0.12.2

Features

  • Create recursive autoregressive forecasters from any scikit-learn regressor
  • Create multi-output autoregressive forecasters from any scikit-learn regressor
  • Grid search to find optimal hyperparameters
  • Grid search to find optimal lags (predictors)
  • Include exogenous variables as predictors
  • Include custom predictors (rolling mean, rolling variance ...)
  • Backtesting
  • Prediction interval estimated by bootstrapping
  • Get predictor importance

Introduction

A time series is a sequence of data arranged chronologically, in principle, equally spaced in time. Time series forecasting is the use of a model to predict future values based on previously observed values, with the option of also including other external variables.

When working with time series, it is seldom needed to predict only the next element in the series (t+1). Instead, the most common goal is to predict a whole future interval (t+1, ..., t+n) or a far point in time (t+n). There are several strategies that allow generating this type of multiple predictions.

Recursive multi-step forecasting

Since the value of t(n) is required to predict the point t(n-1), and t(n-1) is unknown, it is necessary to make recursive predictions in which, each new prediction, is based on the previous one. This process is known as recursive forecasting or recursive multi-step forecasting.

forecasting-python-multi-step


The main challenge when using scikit-learn models for recursive multi-step forecasting is transforming the time series in an matrix where, each value of the series, is related to the time window (lags) that precedes it. This forecasting strategy can be easily generated with the classes ForecasterAutoreg and ForecasterAutoregCustom.

forecasting-python

Time series transformation into a matrix of 5 lags and a vector with the value of the series that follows each row of the matrix.

forecasting-python

Time series transformation including an exogenous variable.



Direct multi-step forecasting

This strategy consists of training a different model for each step. For example, to predict the next 5 values of a time series, 5 different models are trainded, one for each step. As a result, the predictions are independent of each other. This forecasting strategy can be easily generated with the ForecasterAutoregMultiOutput class (changed in version 0.1.9).

forecasting-python-direct-multi-step

Time series transformation into the matrices needed to train a direct multi-step forecaster.

Multiple output forecasting

Certain models are capable of simultaneously predicting several values of a sequence (one-shot), for example, LSTM neural networks. This strategy is not implemented in skforecast.



Getting started

Autoregressive forecaster

# Libraries
# ==============================================================================
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from skforecast.ForecasterAutoreg import ForecasterAutoreg
from sklearn.ensemble import RandomForestRegressor
from sklearn.metrics import mean_squared_error
# Download data
# ==============================================================================
url = ('https://raw.githubusercontent.com/JoaquinAmatRodrigo/skforecast/master/data/h2o.csv')
data = pd.read_csv(url, sep=',', header=0, names=['y', 'datetime'])

# Data preprocessing
# ==============================================================================
data['datetime'] = pd.to_datetime(data['datetime'], format='%Y/%m/%d')
data = data.set_index('datetime')
data = data.asfreq('MS')
data = data['y']
data = data.sort_index()

# Split train-test
# ==============================================================================
steps = 36
data_train = data[:-steps]
data_test  = data[-steps:]

# Plot
# ==============================================================================
fig, ax = plt.subplots(figsize=(9, 4))
data_train.plot(ax=ax, label='train')
data_test.plot(ax=ax, label='test')
ax.legend()

# Create and fit forecaster
# ==============================================================================
forecaster = ForecasterAutoreg(
                regressor = RandomForestRegressor(random_state=123),
                lags      = 15
             )

forecaster.fit(y=data_train)
forecaster
================= 
ForecasterAutoreg 
================= 
Regressor: RandomForestRegressor(random_state=123) 
Lags: [ 1  2  3  4  5  6  7  8  9 10 11 12 13 14 15] 
Window size: 15 
Included exogenous: False 
Type of exogenous variable: None 
Exogenous variables names: None 
Training range: [Timestamp('1991-07-01 00:00:00'), Timestamp('2005-06-01 00:00:00')] 
Training index type: DatetimeIndex 
Training index frequency: MS 
Regressor parameters: {'bootstrap': True, 'ccp_alpha': 0.0, 'criterion': 'squared_error', 'max_depth': None, 'max_features': 'auto', 'max_leaf_nodes': None, 'max_samples': None, 'min_impurity_decrease': 0.0, 'min_samples_leaf': 1, 'min_samples_split': 2, 'min_weight_fraction_leaf': 0.0, 'n_estimators': 100, 'n_jobs': None, 'oob_score': False, 'random_state': 123, 'verbose': 0, 'warm_start': False} 
Creation date: 2022-01-02 16:50:21 
Last fit date: 2022-01-02 16:50:21 
Skforecast version: 0.4.2 
# Predict
# ==============================================================================
predictions = forecaster.predict(steps=36)
predictions.head(3)
2005-07-01    0.921840
2005-08-01    0.954921
2005-09-01    1.101716
Freq: MS, Name: pred, dtype: float64
# Plot predictions
# ==============================================================================
fig, ax=plt.subplots(figsize=(9, 4))
data_train.plot(ax=ax, label='train')
data_test.plot(ax=ax, label='test')
predictions.plot(ax=ax, label='predictions')
ax.legend()

# Prediction error
# ==============================================================================
error_mse = mean_squared_error(
                y_true = data_test,
                y_pred = predictions
            )
print(f"Test error (mse): {error_mse}")
Test error (mse): 0.00429855684785846
# Feature importance
# ==============================================================================
forecaster.get_feature_importance()
| feature   |   importance |
|-----------|--------------|
| lag_1     |   0.0123397  |
| lag_2     |   0.0851603  |
| lag_3     |   0.0134071  |
| lag_4     |   0.00437446 |
| lag_5     |   0.00318805 |
| lag_6     |   0.00343593 |
| lag_7     |   0.00313612 |
| lag_8     |   0.00714094 |
| lag_9     |   0.00783053 |
| lag_10    |   0.0127507  |
| lag_11    |   0.00901919 |
| lag_12    |   0.807098   |
| lag_13    |   0.00481128 |
| lag_14    |   0.0163282  |
| lag_15    |   0.0099792  |

Autoregressive forecaster with exogenous predictors

# Download data
# ==============================================================================
url = ('https://raw.githubusercontent.com/JoaquinAmatRodrigo/skforecast/master/data/h2o_exog.csv')
data = pd.read_csv(url, sep=',', header=0, names=['datetime', 'y', 'exog_1', 'exog_2'])

# Data preprocessing
# ==============================================================================
data['datetime'] = pd.to_datetime(data['datetime'], format='%Y/%m/%d')
data = data.set_index('datetime')
data = data.asfreq('MS')
data = data.sort_index()

# Plot
# ==============================================================================
fig, ax=plt.subplots(figsize=(9, 4))
data.plot(ax=ax);

# Split train-test
# ==============================================================================
steps = 36
data_train = data.iloc[:-steps, :]
data_test  = data.iloc[-steps:, :]
# Create and fit forecaster
# ==============================================================================
forecaster = ForecasterAutoreg(
                regressor = RandomForestRegressor(random_state=123),
                lags      = 15
             )

forecaster.fit(
    y    = data_train['y'],
    exog = data_train[['exog_1', 'exog_2']]
)

forecaster
================= 
ForecasterAutoreg 
================= 
Regressor: RandomForestRegressor(random_state=123) 
Lags: [ 1  2  3  4  5  6  7  8  9 10 11 12 13 14 15] 
Window size: 15 
Included exogenous: True 
Type of exogenous variable: 
   
     
Exogenous variables names: ['exog_1', 'exog_2'] 
Training range: [Timestamp('1992-04-01 00:00:00'), Timestamp('2005-06-01 00:00:00')] 
Training index type: DatetimeIndex 
Training index frequency: MS 
Regressor parameters: {'bootstrap': True, 'ccp_alpha': 0.0, 'criterion': 'squared_error', 'max_depth': None, 'max_features': 'auto', 'max_leaf_nodes': None, 'max_samples': None, 'min_impurity_decrease': 0.0, 'min_samples_leaf': 1, 'min_samples_split': 2, 'min_weight_fraction_leaf': 0.0, 'n_estimators': 100, 'n_jobs': None, 'oob_score': False, 'random_state': 123, 'verbose': 0, 'warm_start': False} 
Creation date: 2022-01-02 16:51:34 
Last fit date: 2022-01-02 16:51:34 
Skforecast version: 0.4.2 

   
# Feature importance
# ==============================================================================
forecaster.get_feature_importance()
| feature   |   importance |
|-----------|--------------|
| lag_1     |   0.0133541  |
| lag_2     |   0.0611202  |
| lag_3     |   0.00908617 |
| lag_4     |   0.00272094 |
| lag_5     |   0.00247847 |
| lag_6     |   0.00315493 |
| lag_7     |   0.00217887 |
| lag_8     |   0.00815443 |
| lag_9     |   0.0103189  |
| lag_10    |   0.0205869  |
| lag_11    |   0.00703555 |
| lag_12    |   0.773389   |
| lag_13    |   0.00458297 |
| lag_14    |   0.0181272  |
| lag_15    |   0.00873237 |
| exog_1    |   0.0103638  |
| exog_2    |   0.0446156  |

Autoregressive forecaster with custom predictors

# Libraries
# ==============================================================================
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from skforecast.ForecasterAutoregCustom import ForecasterAutoregCustom
from sklearn.ensemble import RandomForestRegressor
from sklearn.metrics import mean_squared_error
# Download data
# ==============================================================================
url = ('https://raw.githubusercontent.com/JoaquinAmatRodrigo/skforecast/master/data/h2o.csv')
data = pd.read_csv(url, sep=',', header=0, names=['y', 'datetime'])

# Data preprocessing
# ==============================================================================
data['datetime'] = pd.to_datetime(data['datetime'], format='%Y/%m/%d')
data = data.set_index('datetime')
data = data.asfreq('MS')
data = data['y']
data = data.sort_index()

# Split train-test
# ==============================================================================
steps = 36
data_train = data[:-steps]
data_test  = data[-steps:]
# Custom function to create predictors
# ==============================================================================
def create_predictors(y):
    '''
    Create first 10 lags of a time series.
    Calculate moving average with window 20.
    '''
    
    lags = y[-1:-11:-1]
    mean = np.mean(y[-20:])
    predictors = np.hstack([lags, mean])
    
    return predictors
# Create and fit forecaster
# ==============================================================================
forecaster = ForecasterAutoregCustom(
                    regressor      = RandomForestRegressor(random_state=123),
                    fun_predictors = create_predictors,
                    window_size    = 20
                )

forecaster.fit(y=data_train)
forecaster
======================= 
ForecasterAutoregCustom 
======================= 
Regressor: RandomForestRegressor(random_state=123) 
Predictors created with function: create_predictors 
Window size: 20 
Included exogenous: False 
Type of exogenous variable: None 
Exogenous variables names: None 
Training range: [Timestamp('1991-07-01 00:00:00'), Timestamp('2005-06-01 00:00:00')] 
Training index type: DatetimeIndex 
Training index frequency: MS 
Regressor parameters: {'bootstrap': True, 'ccp_alpha': 0.0, 'criterion': 'squared_error', 'max_depth': None, 'max_features': 'auto', 'max_leaf_nodes': None, 'max_samples': None, 'min_impurity_decrease': 0.0, 'min_samples_leaf': 1, 'min_samples_split': 2, 'min_weight_fraction_leaf': 0.0, 'n_estimators': 100, 'n_jobs': None, 'oob_score': False, 'random_state': 123, 'verbose': 0, 'warm_start': False} 
Creation date: 2022-01-02 16:52:12 
Last fit date: 2022-01-02 16:52:12 
Skforecast version: 0.4.2
# Predict
# ==============================================================================
predictions = forecaster.predict(steps=36)
predictions.head(3)
2005-07-01    0.926598
2005-08-01    0.948202
2005-09-01    1.020947
Freq: MS, Name: pred, dtype: float64
# Feature importance
# ==============================================================================
forecaster.get_feature_importance()
| feature             |   importance |
|---------------------|--------------|
| custom_predictor_0  |    0.53972   |
| custom_predictor_1  |    0.119097  |
| custom_predictor_2  |    0.0464036 |
| custom_predictor_3  |    0.0241653 |
| custom_predictor_4  |    0.0305667 |
| custom_predictor_5  |    0.0151391 |
| custom_predictor_6  |    0.0428832 |
| custom_predictor_7  |    0.012742  |
| custom_predictor_8  |    0.018938  |
| custom_predictor_9  |    0.108639  |
| custom_predictor_10 |    0.0417066 |

Prediction intervals

# Libraries
# ==============================================================================
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from skforecast.ForecasterAutoreg import ForecasterAutoreg
from sklearn.linear_model import Ridge
from sklearn.preprocessing import StandardScaler
from sklearn.pipeline import make_pipeline
# Download data
# ==============================================================================
url = ('https://raw.githubusercontent.com/JoaquinAmatRodrigo/skforecast/master/data/h2o.csv')
data = pd.read_csv(url, sep=',', header=0, names=['y', 'datetime'])

# Data preprocessing
# ==============================================================================
data['datetime'] = pd.to_datetime(data['datetime'], format='%Y/%m/%d')
data = data.set_index('datetime')
data = data.asfreq('MS')
data = data['y']
data = data.sort_index()

# Split train-test
# ==============================================================================
steps = 36
data_train = data[:-steps]
data_test  = data[-steps:]
# Create and fit forecaster
# ==============================================================================
forecaster = ForecasterAutoreg(
                    regressor = make_pipeline(StandardScaler(), Ridge()),
                    lags      = 15
                )

forecaster.fit(y=data_train)
forecaster
================= 
ForecasterAutoreg 
================= 
Regressor: Pipeline(steps=[('standardscaler', StandardScaler()), ('ridge', Ridge())]) 
Lags: [ 1  2  3  4  5  6  7  8  9 10 11 12 13 14 15] 
Window size: 15 
Included exogenous: False 
Type of exogenous variable: None 
Exogenous variables names: None 
Training range: [Timestamp('1991-07-01 00:00:00'), Timestamp('2005-06-01 00:00:00')] 
Training index type: DatetimeIndex 
Training index frequency: MS 
Regressor parameters: {'standardscaler__copy': True, 'standardscaler__with_mean': True, 'standardscaler__with_std': True, 'ridge__alpha': 1.0, 'ridge__copy_X': True, 'ridge__fit_intercept': True, 'ridge__max_iter': None, 'ridge__normalize': 'deprecated', 'ridge__positive': False, 'ridge__random_state': None, 'ridge__solver': 'auto', 'ridge__tol': 0.001} 
Creation date: 2022-01-02 16:53:00 
Last fit date: 2022-01-02 16:53:00 
Skforecast version: 0.4.2 
# Prediction intervals
# ==============================================================================
predictions = forecaster.predict_interval(
                    steps    = steps,
                    interval = [5, 95],
                    n_boot   = 500
              )


fig, ax=plt.subplots(figsize=(9, 4))
data_test.plot(ax=ax, label='test')
predictions['pred'].plot(ax=ax, label='predictions')
ax.fill_between(
    predictions.index,
    predictions['lower_bound'],
    predictions['upper_bound'],
    alpha=0.5
)
ax.legend()

Backtesting

# Libraries
# ==============================================================================
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from skforecast.ForecasterAutoreg import ForecasterAutoreg
from skforecast.model_selection import backtesting_forecaster
from sklearn.ensemble import RandomForestRegressor
from sklearn.metrics import mean_squared_error
# Download data
# ==============================================================================
url = ('https://raw.githubusercontent.com/JoaquinAmatRodrigo/skforecast/master/data/h2o.csv')
data = pd.read_csv(url, sep=',', header=0, names=['y', 'datetime'])

# Data preprocessing
# ==============================================================================
data['datetime'] = pd.to_datetime(data['datetime'], format='%Y/%m/%d')
data = data.set_index('datetime')
data = data.asfreq('MS')
data = data['y']
data = data.sort_index()

# Split train-backtest
# ==============================================================================
n_backtest = 36*3  # Last 9 years are used for backtest
data_train = data[:-n_backtest]
data_backtest = data[-n_backtest:]

# Plot
# ==============================================================================
fig, ax=plt.subplots(figsize=(9, 4))
data_train.plot(ax=ax, label='train')
data_backtest.plot(ax=ax, label='backtest')
ax.legend()
# Backtest forecaster
# ==============================================================================
forecaster = ForecasterAutoreg(
                regressor = RandomForestRegressor(random_state=123),
                lags      = 15 
             )

metric, predictions_backtest = backtesting_forecaster(
                                    forecaster = forecaster,
                                    y          = data,
                                    initial_train_size = len(data_train),
                                    steps      = 12,
                                    metric     = 'mean_squared_error',
                                    refit      = True,
                                    verbose    = True
                               )
Information of backtesting process
----------------------------------
Number of observations used for initial training: 96
Number of observations used for backtesting: 108
    Number of folds: 9
    Number of steps per fold: 12

Data partition in fold: 0
    Training:   1991-07-01 00:00:00 -- 1999-06-01 00:00:00
    Validation: 1999-07-01 00:00:00 -- 2000-06-01 00:00:00
Data partition in fold: 1
    Training:   1991-07-01 00:00:00 -- 2000-06-01 00:00:00
    Validation: 2000-07-01 00:00:00 -- 2001-06-01 00:00:00
Data partition in fold: 2
    Training:   1991-07-01 00:00:00 -- 2001-06-01 00:00:00
    Validation: 2001-07-01 00:00:00 -- 2002-06-01 00:00:00
Data partition in fold: 3
    Training:   1991-07-01 00:00:00 -- 2002-06-01 00:00:00
    Validation: 2002-07-01 00:00:00 -- 2003-06-01 00:00:00
Data partition in fold: 4
    Training:   1991-07-01 00:00:00 -- 2003-06-01 00:00:00
    Validation: 2003-07-01 00:00:00 -- 2004-06-01 00:00:00
Data partition in fold: 5
    Training:   1991-07-01 00:00:00 -- 2004-06-01 00:00:00
    Validation: 2004-07-01 00:00:00 -- 2005-06-01 00:00:00
Data partition in fold: 6
    Training:   1991-07-01 00:00:00 -- 2005-06-01 00:00:00
    Validation: 2005-07-01 00:00:00 -- 2006-06-01 00:00:00
Data partition in fold: 7
    Training:   1991-07-01 00:00:00 -- 2006-06-01 00:00:00
    Validation: 2006-07-01 00:00:00 -- 2007-06-01 00:00:00
Data partition in fold: 8
    Training:   1991-07-01 00:00:00 -- 2007-06-01 00:00:00
    Validation: 2007-07-01 00:00:00 -- 2008-06-01 00:00:00
fig, ax = plt.subplots(figsize=(9, 4))
data_backtest.plot(ax=ax, label='backtest')
predictions_backtest.plot(ax=ax, label='predictions')
ax.legend()

Model tuning

# Libraries
# ==============================================================================
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from skforecast.ForecasterAutoreg import ForecasterAutoreg
from skforecast.model_selection import grid_search_forecaster
from sklearn.ensemble import RandomForestRegressor
# Download data
# ==============================================================================
url = ('https://raw.githubusercontent.com/JoaquinAmatRodrigo/skforecast/master/data/h2o.csv')
data = pd.read_csv(url, sep=',', header=0, names=['y', 'datetime'])

# Data preprocessing
# ==============================================================================
data['datetime'] = pd.to_datetime(data['datetime'], format='%Y/%m/%d')
data = data.set_index('datetime')
data = data.asfreq('MS')
data = data['y']
data = data.sort_index()

# Split train-test
# ==============================================================================
steps = 24
data_train = data.loc[: '2001-01-01']
data_val = data.loc['2001-01-01' : '2006-01-01']
data_test  = data.loc['2006-01-01':]

# Plot
# ==============================================================================
fig, ax=plt.subplots(figsize=(9, 4))
data_train.plot(ax=ax, label='train')
data_val.plot(ax=ax, label='validation')
data_test.plot(ax=ax, label='test')
ax.legend()

# Grid search hyperparameters and lags
# ==============================================================================
forecaster = ForecasterAutoreg(
                regressor = RandomForestRegressor(random_state=123),
                lags      = 12 # Placeholder, the value will be overwritten
             )

# Regressor hyperparameters
param_grid = {'n_estimators': [50, 100],
              'max_depth': [5, 10, 15]}

# Lags used as predictors
lags_grid = [3, 10, [1, 2, 3, 20]]

results_grid = grid_search_forecaster(
                        forecaster  = forecaster,
                        y           = data.loc[:'2006-01-01'],
                        param_grid  = param_grid,
                        lags_grid   = lags_grid,
                        steps       = 12,
                        refit       = True,
                        metric      = 'mean_squared_error',
                        initial_train_size = len(data_train),
                        return_best = True,
                        verbose     = False
                    )

results_grid
Number of models compared: 18
loop lags_grid:   0%|                                               | 0/3 [00:00
| lags                            | params                                 |    metric |   max_depth |   n_estimators |
|---------------------------------|----------------------------------------|-----------|-------------|----------------|
| [ 1  2  3  4  5  6  7  8  9 10] | {'max_depth': 5, 'n_estimators': 50}   | 0.0334486 |           5 |             50 |
| [ 1  2  3  4  5  6  7  8  9 10] | {'max_depth': 10, 'n_estimators': 50}  | 0.0392212 |          10 |             50 |
| [ 1  2  3  4  5  6  7  8  9 10] | {'max_depth': 15, 'n_estimators': 100} | 0.0392658 |          15 |            100 |
| [ 1  2  3  4  5  6  7  8  9 10] | {'max_depth': 5, 'n_estimators': 100}  | 0.0395258 |           5 |            100 |
| [ 1  2  3  4  5  6  7  8  9 10] | {'max_depth': 10, 'n_estimators': 100} | 0.0402408 |          10 |            100 |
| [ 1  2  3  4  5  6  7  8  9 10] | {'max_depth': 15, 'n_estimators': 50}  | 0.0407645 |          15 |             50 |
| [ 1  2  3 20]                   | {'max_depth': 15, 'n_estimators': 100} | 0.0439092 |          15 |            100 |
| [ 1  2  3 20]                   | {'max_depth': 5, 'n_estimators': 100}  | 0.0449923 |           5 |            100 |
| [ 1  2  3 20]                   | {'max_depth': 5, 'n_estimators': 50}   | 0.0462237 |           5 |             50 |
| [1 2 3]                         | {'max_depth': 5, 'n_estimators': 50}   | 0.0486662 |           5 |             50 |
| [ 1  2  3 20]                   | {'max_depth': 10, 'n_estimators': 100} | 0.0489914 |          10 |            100 |
| [ 1  2  3 20]                   | {'max_depth': 10, 'n_estimators': 50}  | 0.0501932 |          10 |             50 |
| [1 2 3]                         | {'max_depth': 15, 'n_estimators': 100} | 0.0505563 |          15 |            100 |
| [ 1  2  3 20]                   | {'max_depth': 15, 'n_estimators': 50}  | 0.0512172 |          15 |             50 |
| [1 2 3]                         | {'max_depth': 5, 'n_estimators': 100}  | 0.0531229 |           5 |            100 |
| [1 2 3]                         | {'max_depth': 15, 'n_estimators': 50}  | 0.0602604 |          15 |             50 |
| [1 2 3]                         | {'max_depth': 10, 'n_estimators': 50}  | 0.0609513 |          10 |             50 |
| [1 2 3]                         | {'max_depth': 10, 'n_estimators': 100} | 0.0673343 |          10 |            100 |

Using forecaster in production

A trained model may be deployed in production in order to generate predictions regularly. Suppose predictions have to be generated on a weekly basis, for example, every Monday. By default, when using the predict method on a trained forecaster object, predictions start right after the last training observation. Therefore, the model could be retrained weekly, just before the first prediction is needed, and call the predict method. This strategy, although simple, may not be possible to use for several reasons:

  • Model training is very expensive and cannot be run as often.

  • The history with which the model was trained is no longer available.

  • The prediction frequency is so high that there is no time to train the model between predictions.

In these scenarios, the model must be able to predict at any time, even if it has not been recently trained.

Every model generated using skforecast has the last_window argument in its predict method. Using this argument, it is possible to provide only the past values needs to create the autoregressive predictors (lags) and thus, generate the predictions without the need to retrain the model.

import numpy as np
import pandas as pd
from sklearn.ensemble import RandomForestRegressor
from skforecast.ForecasterAutoreg import ForecasterAutoreg
url = ('https://raw.githubusercontent.com/JoaquinAmatRodrigo/skforecast/master/data/h2o.csv')
data = pd.read_csv(url, sep=',', header=0, names=['y', 'date'])

data['date'] = pd.to_datetime(data['date'], format='%Y/%m/%d')
data = data.set_index('date')
data = data.asfreq('MS')
data_train = data.loc[:'2005-01-01']
data_train.tail()
date y
2004-09-01 00:00:00 1.13443
2004-10-01 00:00:00 1.18101
2004-11-01 00:00:00 1.21604
2004-12-01 00:00:00 1.25724
2005-01-01 00:00:00 1.17069
forecaster = ForecasterAutoreg(
                    regressor = RandomForestRegressor(),
                    lags = 5
                )

forecaster.fit(y=data_train['y'])
2005-02-01    0.927480
2005-03-01    0.756215
2005-04-01    0.692595
Freq: MS, Name: pred, dtype: float64

As expected, predictions follow directly from the end of training data. When last window is provided, the forecaster uses this data to generate the lags needed as predictors and starts the prediction afterwards.

forecaster.predict(steps=3, last_window=data['y'].tail(5))
2008-07-01    0.803853
2008-08-01    0.870858
2008-09-01    0.905003
Freq: MS, Name: pred, dtype: float64

Since the provided last_window contains values from 2008-02-01 to 2008-06-01, the forecaster is able to create the needed lags and predict the next 5 steps.

WARNING:
It is important to note that the length of last windows must be enough to include the maximum lag used by the forecaster. Fore example, if the forecaster uses lags 1, 24, 48 and 72 last_window must include the last 72 values of the series.

Examples and tutorials

English

Español

Donating

If you found skforecast useful, you can support us with a donation. Your contribution will help to continue developing and improving this project. Many thanks!

paypal

Licence

joaquinAmatRodrigo/skforecast is licensed under the MIT License, a short and simple permissive license with conditions only requiring preservation of copyright and license notices. Licensed works, modifications, and larger works may be distributed under different terms and without source code.

Comments
  • Bayesian Optimization

    Bayesian Optimization

    I am trying to tune the model using scikit-optimize. But a bunch of errors are coming up. I think it is a good idea to implement bayesian search for this library too.

    question 
    opened by CalenDario13 11
  • IndexError When lags is greater than number of steps skforecast==0.4.3

    IndexError When lags is greater than number of steps skforecast==0.4.3

    Another beginner question - what are the conditions for refit = True?

    I have below error:

    d:\programy\miniconda3\lib\site-packages\skforecast\ForecasterAutoreg\ForecasterAutoreg.py in _recursive_predict(self, steps, last_window, exog) 405 406 for i in range(steps): --> 407 X = last_window[-self.lags].reshape(1, -1) 408 if exog is not None: 409 X = np.column_stack((X, exog[i, ].reshape(1, -1)))

    IndexError: index -6 is out of bounds for axis 0 with size 4

    If it is important from input side I have following data:

    data.shape (50,) data_train.shape (37,) data_test.shape (13,) steps = 13 initial lags: lags = int(data_train.shape[0]*0.4) = 14

    whole grid search looks like that:

    forecaster_rf = ForecasterAutoreg(
                        regressor = XGBRegressor(verbosity=1),
                        lags = lags
                 )
    
    param_grid = {
                'gamma': [0.5, 1, 1.5, 2, 5],
                'subsample': [0.6, 0.8, 1.0],
                'colsample_bytree': [0.6, 0.8, 1.0],
                'max_depth': np.arange(2, 22, 2)
                }
    
    lags_grid = [6, 12, lags, [1, 3, 6, 12, lags]]
    

    below lags throws an error too: lags_grid = np.arange(1, 3, 1) lags_grid = [1]

    metric = mean_squared_log_error
    
    results_grid = grid_search_forecaster(
                            forecaster         = forecaster_rf,
                            y                  = data_train,
                            param_grid         = param_grid,
                            steps              = steps,
                            metric             = metric,
                            refit              = True,
                            initial_train_size = int(len(data_train)*0.5),
                            return_best        = True,
                            verbose            = True
                       )
    

    Originally posted by @spike8888 in https://github.com/JoaquinAmatRodrigo/skforecast/issues/137#issuecomment-1108727110

    bug 
    opened by JoaquinAmatRodrigo 9
  • ValueError for backtesting_forecaster when interval is provided

    ValueError for backtesting_forecaster when interval is provided

    Hi !

    I'm trying to use your backtesting_forecaster

    and when I use and ask for intervals, it leads to ValueError

    When no intervals are asked, all works perfectly:

    [in]:

    if __name__ == "__main__":
        import pandas as pd
        from skforecast.ForecasterAutoreg import ForecasterAutoreg
        from skforecast.model_selection import backtesting_forecaster
        from sklearn.ensemble import RandomForestRegressor
    
        y_train = pd.Series([479.157, 478.475, 481.205, 492.467, 490.42, 508.166, 523.182,
                             499.634, 495.88, 494.174, 494.174, 490.078, 490.078, 495.539,
                             488.713, 485.3, 493.491, 492.126, 493.832, 485.983, 481.887,
                             474.379, 433.084, 456.633, 477.451, 468.919, 484.959, 471.99,
                             486.324, 498.61, 517.381, 485.3, 480.864, 485.983, 484.276,
                             490.761, 490.078, 494.515, 495.88, 493.15, 491.443, 490.42,
                             485.3, 485.3, 486.665, 467.895, 441.616, 469.601, 477.11,
                             486.324, 485.3, 489.054, 494.856, 513.968, 544.683, 557.31,
                             574.374, 603.383, 617.034, 621.812, 627.273, 612.598, 598.605,
                             610.891, 598.605, 563.112, 542.635, 536.492, 499.634, 456.633,
                             431.037, 453.903, 464.141, 454.244, 456.633, 476.768, 495.88,
                             523.524, 537.516, 577.787, 600.994, 616.693, 631.71, 636.487,
                             621.471, 635.805, 625.908, 616.011, 581.2, 565.842, 553.556,
                             570.279, 514.992, 483.253, 460.046, 469.26, 475.745, 478.816,
                             482.57, 506.801, 510.896])
    
    
    
        backtesting_forecaster(
            forecaster=ForecasterAutoreg(regressor=RandomForestRegressor(random_state=42), lags=10),
            y=y_train,
            steps=24,
            metric="mean_absolute_percentage_error",
            initial_train_size=14,
            n_boot=50,
        )
    

    [out]:

    (array([0.07647964]),
               pred
     14   493.40924
     15   493.17717
     16   492.99968
     17   492.98603
     18   492.69932
     ..         ...
     96   492.98603
     97   492.98603
     98   492.98603
     99   492.98603
     100  492.98603
     
     [87 rows x 1 columns])
    

    however asking for intervals leads to ValueError

    [in]:

    if __name__ == "__main__":
        import pandas as pd
        from skforecast.ForecasterAutoreg import ForecasterAutoreg
        from skforecast.model_selection import backtesting_forecaster
        from sklearn.ensemble import RandomForestRegressor
    
        y_train = pd.Series([479.157, 478.475, 481.205, 492.467, 490.42, 508.166, 523.182,
                             499.634, 495.88, 494.174, 494.174, 490.078, 490.078, 495.539,
                             488.713, 485.3, 493.491, 492.126, 493.832, 485.983, 481.887,
                             474.379, 433.084, 456.633, 477.451, 468.919, 484.959, 471.99,
                             486.324, 498.61, 517.381, 485.3, 480.864, 485.983, 484.276,
                             490.761, 490.078, 494.515, 495.88, 493.15, 491.443, 490.42,
                             485.3, 485.3, 486.665, 467.895, 441.616, 469.601, 477.11,
                             486.324, 485.3, 489.054, 494.856, 513.968, 544.683, 557.31,
                             574.374, 603.383, 617.034, 621.812, 627.273, 612.598, 598.605,
                             610.891, 598.605, 563.112, 542.635, 536.492, 499.634, 456.633,
                             431.037, 453.903, 464.141, 454.244, 456.633, 476.768, 495.88,
                             523.524, 537.516, 577.787, 600.994, 616.693, 631.71, 636.487,
                             621.471, 635.805, 625.908, 616.011, 581.2, 565.842, 553.556,
                             570.279, 514.992, 483.253, 460.046, 469.26, 475.745, 478.816,
                             482.57, 506.801, 510.896])
    
    
    
        backtesting_forecaster(
            forecaster=ForecasterAutoreg(regressor=RandomForestRegressor(random_state=42), lags=10),
            y=y_train,
            steps=24,
            metric="mean_absolute_percentage_error",
            initial_train_size=14,
            interval=[95],
            n_boot=50,
        )
    

    [out]:

    Traceback (most recent call last):
      File "...\lib\site-packages\IPython\core\interactiveshell.py", line 3398, in run_code
        exec(code_obj, self.user_global_ns, self.user_ns)
      File "<ipython-input-6-9cd2f471a2e7>", line 22, in <cell line: 22>
        backtesting_forecaster(
      File "...\lib\site-packages\skforecast\model_selection\model_selection.py", line 925, in backtesting_forecaster
        metric_value, backtest_predictions = _backtesting_forecaster_no_refit(
      File "...\lib\site-packages\skforecast\model_selection\model_selection.py", line 705, in _backtesting_forecaster_no_refit
        pred = forecaster.predict_interval(
      File "...\lib\site-packages\skforecast\ForecasterAutoreg\ForecasterAutoreg.py", line 757, in predict_interval
        predictions = pd.DataFrame(
      File "...\lib\site-packages\pandas\core\frame.py", line 694, in __init__
        mgr = ndarray_to_mgr(
      File "...\lib\site-packages\pandas\core\internals\construction.py", line 351, in ndarray_to_mgr
        _check_values_indices_shape_match(values, index, columns)
      File "...\dev\lib\site-packages\pandas\core\internals\construction.py", line 422, in _check_values_indices_shape_match
        raise ValueError(f"Shape of passed values is {passed}, indices imply {implied}")
    ValueError: Shape of passed values is (24, 2), indices imply (24, 3)
    
    enhancement good first issue 
    opened by tkaraouzene 8
  • Pip Installation Fails on Macbook Pro M1

    Pip Installation Fails on Macbook Pro M1

    When trying to install skforecast using pip install skforecast, the install process fails with the following output:

          
    note: This error originates from a subprocess, and is likely not a problem with pip.
    ERROR: Failed building wheel for numpy
    Failed to build numpy
    ERROR: Could not build wheels for numpy, which is required to install pyproject.toml-based projects
    [end of output]
    
    note: This error originates from a subprocess, and is likely not a problem with pip.
    error: subprocess-exited-with-error
    
    × pip subprocess to install build dependencies did not run successfully.
    │ exit code: 1
    ╰─> See above for output.
    

    Unfortunately, the full output is too large, however this seems to happen when trying to install the build dependencies for statsmodels.

    Setup: MacBook Pro M1 MacOS Monterey 12.6

    Python 3.9.13 (main, Oct 5 2022, 11:08:35) Clang 14.0.0 (clang-1400.0.29.102)

    opened by bernhard-kaindl 7
  • How to disable verbosity on Skforecast?

    How to disable verbosity on Skforecast?

    TLDR

    as the title says, is there a way to pass a verbosity parameter to the fit() function ?

    I would love to not have INFOs printed. There are a lot and kinda slow down the code a little bit.

    question 
    opened by tulbureandreit 5
  • Question: Estrategia de validación cruzada demasiado costosa

    Question: Estrategia de validación cruzada demasiado costosa

    Hola,

    Creo que estás haciendo un gran trabajo con skforecast y los tutoriales que lo acompañan son muy didácticos. Antes de empezar a usar skforecast la validación cruzada que hago, usando por ejemplo LightGBM, es basarme en TimeSeriesSplit para crear, por ejemplo, 5 particiones, de manera que el proceso de validación cruzada queda más o menos así (la primera columna indica la parte de entrenamiento y la segunda la de validación): [0,1,2,3,4] [5] [0,1,2,3,4,5] [6] [0,1,2,3,4,5,6] [7] [0,1,2,3,4,5,6,7] [8] [0,1,2,3,4,5,6,7,8] [9]

    En el ejemplo de arriba tendría 5 conjuntos de predicciones validadas y la métrica final sería por ejemplo la media de las métricas obtenidas en cada una de las validaciones. Por tanto, cualquier prueba de selección de modelo estaría sujeta a este bucle de validación cruzada. Al tener 5 particiones o "folds", el modelo habría sido re-entrenado 5 veces lo cual permite usar este bucle de validación cruzada a la hora, por ejemplo, de ajustar hiperparámetros.

    Al usar la libreria skforecast, veo que se crea un "fold (para el caso del ForecasterAutoregDirect) del tamaño del número de pasos. En mi caso, esto hace casi siempre inviable el uso de la opción "refit=True", ya que el número de "folds" es muy alto y por tanto se hacen muchos "re-entrenamientos".ç

    Por favor, ¿podrías indicarme si hay alguna manera de usar la opción "refit=True" si que haya tantos "re-entrenamientos"?

    Un saludo y muchas gracias

    question 
    opened by benitocm 4
  • Plot the curve for learning of an lgbm forecaster

    Plot the curve for learning of an lgbm forecaster

    Hello! I am new to sk.forecast.ForecasterAutoReg. I tried to implement an LGBM model, and make the predictions on 4 steps ahead. I did manage to visualize the predictions, but I struggle how to plot the curve for the learning part to see how the model performs on the learning dataframe. Below is the code I have used.

    `forecaster = ForecasterAutoreg( regressor=LGBMRegressor(**lgbm_trial_params), lags=[1,2,3,4] )

    cols = [col for col in df.columns if col not in ['date', "Qty"]] exog = df[cols]

    forecaster.fit(y=df["Qty"][:-4], exog=exog[:-4]) predictions = forecaster.predict(steps = 4,exog = exog[:-4])`

    Qty represents the target variable I want to predict and my dataframe is structured on weekly data with month, week_num and last_month_average as features.

    Here is a printscreen of the structure of my dataframe:

    image

    I did not manage to find something useful searching the internet so any help will be much apreciatted. Thanks!

    question 
    opened by DariusMargineanNicolae 4
  • How to incorporate pipeline in bayesian_optuna_search?

    How to incorporate pipeline in bayesian_optuna_search?

    Hi there, recently I have tried skforecast version 0.5.x with _bayesian_optuna_search. In order to make sklearn SVR work properly, I have to add StandardScaler and intend to use Pipeline.

    However, after several trials, I cannot implement the pipeline in _bayesian_optuna_search. Are there any solutions?

    question 
    opened by andreale28 4
  • Support for multiple metrics in model_selection

    Support for multiple metrics in model_selection

    Add support for multiple metrics when backtesting.

    • If metric is an instance of str or callable behavior is the same as before
    • If metric is an instance of list, multiple metrics will be calculated. Only the first metric will be considered in order to select the best parameters.
    opened by Pablo-Davila 4
  • How to fill future known information from one of the exogenous variables?

    How to fill future known information from one of the exogenous variables?

    Hi developers,

    I have a question about fill future known information from one of the exogenous variables. For example, I have a data where is y as target variable and three exogenous variables X1,X2, and X3. If I have future known information of X3, but no future information of X1,X2. Either using directed or recursive methods, how to integrate the future known exogenous variables (X3) and without future known (X1,X2) and integrate this in the designed framework package?

    question 
    opened by kennis222 3
  • About get_coef in older version

    About get_coef in older version

    Hi developers,

    The function "get_coef" is deprecated since version 4.3.0, but I would like to use the get_coef with an older version since it easier to interpret to people without machine learning or statistical knowledge compared to use the "impurity-based feature importance" . However, when I use the function "get_coef" in the older version either 4.2.0 or 4.1.0, the program reports error with "AttributeError: 'ForecasterAutoregMultiOutput' object has no attribute 'get_coef'"

    Here is the codes I calls for the function: coef_ = [] for i,j in zip(range(1,7),pd.date_range(start='2022-01',periods=6,freq='M')): <space>df = pd.DataFrame() <space>df['feature'] = model_direct.get_coef(step=i)['feature'] <space>df['coef'] = model_direct.get_coef(step=i)['coef'] <space> df['date'] = pd.to_datetime(j) <space>coef_.append(df)

    Thanks.

    question 
    opened by kennis222 3
  • Question: forecaster.predict is not same as backtesting_forecaster predictions

    Question: forecaster.predict is not same as backtesting_forecaster predictions

    Hello I have a question. Why is the forecast value different even if the last_window data of forecaster.predict and the initial_train_data of backtesting_forecaster are set to be the same period? (using same forecaster) Did I miss anything?

    opened by relakuman 1
  • fcaster.fit Lightgmb freezes

    fcaster.fit Lightgmb freezes

    Hi,

    To be very short:

    I tried to fit a lightgbm model onto forecaster and it freezes every time without RAM or memory issues.

    Code:

    param_grid = {'n_estimators': 2000, 'boosting_type': 'dart', 'max_depth': 45, 'learning_rate': 0.01, 'num_leaves': 25, 'lambda_l1': 0.1, 'lambda_l2': 0.5, 'min_child_samples': 50}
    
      lags_lightgbm = 16
      forecaster = ForecasterAutoreg(
          regressor=LGBMRegressor(**param_grid), lags=lags_lightgbm
      )
      cols = [col for col in df_to_process_lightgbm.columns if col not in ["ds", "y"]]
    
      exog = df_to_process_lightgbm[cols]
    
      forecaster.fit(y=df_to_process_lightgbm["y"], exog=exog) -> here it freezes
    
      predictions = forecaster.predict(steps=8, exog=exog)
    
      predictions = predictions.values
    

    Environment: Ubuntu 20.04

    certifi                  2022.9.24
    charset-normalizer       2.1.1
    click                    8.1.3
    cliff                    4.1.0
    cmaes                    0.9.0
    cmd2                     2.4.2
    cmdstanpy                1.0.8
    colorlog                 6.7.0
    comm                     0.1.2
    contourpy                1.0.6
    convertdate              2.4.0
    cycler                   0.11.0
    Cython                   0.29.32
    debugpy                  1.6.4
    decorator                5.1.1
    entrypoints              0.4
    ephem                    4.1.3
    executing                1.2.0
    fonttools                4.38.0
    frozenlist               1.3.3
    greenlet                 2.0.1
    hijri-converter          2.2.4
    idna                     3.4
    importlib-metadata       5.1.0
    ipykernel                6.19.2
    ipython                  8.7.0
    ipywidgets               8.0.3
    isoweek                  1.3.3
    jedi                     0.18.2
    jmespath                 1.0.1
    joblib                   1.2.0
    kiwisolver               1.4.4
    lightgbm                 3.3.3
    LunarCalendar            0.0.9
    Mako                     1.2.4
    MarkupSafe               2.1.1
    matplotlib               3.5.0
    matplotlib-inline        0.1.6
    multidict                6.0.2
    mypy-extensions          0.4.3
    mysql-connector-python   8.0.31
    nest-asyncio             1.5.6
    numpy                    1.23.0
    nvidia-cublas-cu11       11.10.3.66
    nvidia-cuda-nvrtc-cu11   11.7.99
    nvidia-cuda-runtime-cu11 11.7.99
    nvidia-cudnn-cu11        8.5.0.96
    optuna                   2.10.0
    packaging                22.0
    pandas                   1.4.0
    parso                    0.8.3
    pathspec                 0.10.2
    patsy                    0.5.3
    pbr                      5.11.0
    pexpect                  4.8.0
    pickleshare              0.7.5
    Pillow                   9.3.0
    pip                      22.3.1
    platformdirs             2.6.0
    prettytable              3.5.0
    prompt-toolkit           3.0.36
    protobuf                 3.20.1
    psutil                   5.9.4
    ptyprocess               0.7.0
    pure-eval                0.2.2
    pyaml                    21.10.1
    Pygments                 2.13.0
    PyMeeus                  0.5.12
    pyparsing                3.0.9
    pyperclip                1.8.2
    python-dateutil          2.8.2
    python-slugify           6.1.2
    pytz                     2022.6
    PyYAML                   6.0
    pyzmq                    24.0.1
    s3transfer               0.6.0
    scikit-learn             1.1.0
    scikit-optimize          0.9.0
    scipy                    1.9.3
    seaborn                  0.11.0
    setuptools               65.6.3
    setuptools-git           1.2
    setuptools-scm           7.0.5
    six                      1.16.0
    skforecast               0.5.1
    stack-data               0.6.2
    statsmodels              0.13.0
    stevedore                4.1.1
    tenacity                 8.1.0
    text-unidecode           1.3
    threadpoolctl            3.1.0
    tomli                    2.0.1
    torch                    1.12.0
    torch-lr-finder          0.2.1
    tornado                  6.2
    tqdm                     4.64.0
    traitlets                5.7.1
    typing_extensions        4.4.0
    urllib3                  1.26.13
    wcwidth                  0.2.5
    wheel                    0.38.4
    widgetsnbextension       4.0.4
    yarl                     1.8.1
    
    opened by tulbureandreit 2
  • Forecasting Future Unknown Data

    Forecasting Future Unknown Data

    Hello,

    I divided the data into three part: Train, validation and test. I used the backtesting forecaster and predicted the validation data. Then I obtained a rmse via predicted and validation data. Now, I want to predict the test data without giving the test data into the model using backtesting forecaster. I will calculate a rmse again. Then I will forecast the future unknown data. How can I do that??

    Thank you.

    question 
    opened by yagmurn 5
  • Backtesting with overlap in the validation sets [parameter defining forecast origin shift]

    Backtesting with overlap in the validation sets [parameter defining forecast origin shift]

    Hi guys. I was thinking about performing backtesting with overlap in the validation sets. That could be done by having a parameter to define how many periods the forecast origin should advance/shift.

    I'll leave an image below that shows the desired backtesting method.

    What do you guys think?

    Screenshot 2022-10-27 at 12 12 26

    opened by flaviojfpereira 3
  • Question: is it possible to use early stopping of Lightbm, Catboost?

    Question: is it possible to use early stopping of Lightbm, Catboost?

    Hi,

    i am using gbt algoritms as base regressor for the forecaster. I am interested in using the early stopping feature of those kind algos. Is it possible?

    in the case of HistogramGradientboosting i think is easier becuse the early stopping is configures differently.

    Thank you in advance

    question 
    opened by benitocm 5
Releases(v.0.6.0)
Owner
Joaquín Amat Rodrigo
Data science, statistics and machine learning.
Joaquín Amat Rodrigo
Mortality risk prediction for COVID-19 patients using XGBoost models

Mortality risk prediction for COVID-19 patients using XGBoost models Using demographic and lab test data received from the HM Hospitales in Spain, I b

1 Jan 19, 2022
Polyglot Machine Learning example for scraping similar news articles.

Polyglot Machine Learning example for scraping similar news articles In this example, we will see how we can work with Machine Learning applications w

MetaCall 15 Mar 28, 2022
whylogs: A Data and Machine Learning Logging Standard

whylogs: A Data and Machine Learning Logging Standard whylogs is an open source standard for data and ML logging whylogs logging agent is the easiest

WhyLabs 2k Jan 06, 2023
This is an auto-ML tool specialized in detecting of outliers

Auto-ML tool specialized in detecting of outliers Description This tool will allows you, with a Dash visualization, to compare 10 models of machine le

1 Nov 03, 2021
Esse é o meu primeiro repo tratando de fim a fim, uma pipeline de dados abertos do governo brasileiro relacionado a compras de contrato e cronogramas anuais com spark, em pyspark e SQL!

Olá! Esse é o meu primeiro repo tratando de fim a fim, uma pipeline de dados abertos do governo brasileiro relacionado a compras de contrato e cronogr

Henrique de Paula 10 Apr 04, 2022
A simple example of ML classification, cross validation, and visualization of feature importances

Simple-Classifier This is a basic example of how to use several different libraries for classification and ensembling, mostly with sklearn. Example as

Rob 2 Aug 25, 2022
Made in collaboration with Chris George for Art + ML Spring 2019.

Deepdream Eyes Made in collaboration with Chris George for Art + ML Spring 2019.

Francisco Cabrera 1 Jan 12, 2022
Python package for concise, transparent, and accurate predictive modeling

Python package for concise, transparent, and accurate predictive modeling. All sklearn-compatible and easy to use. 📚 docs • 📖 demo notebooks Modern

Chandan Singh 983 Jan 01, 2023
A machine learning project that predicts the price of used cars in the UK

Car Price Prediction Image Credit: AA Cars Project Overview Scraped 3000 used cars data from AA Cars website using Python and BeautifulSoup. Cleaned t

Victor Umunna 7 Oct 13, 2022
Python ML pipeline that showcases mltrace functionality.

mltrace tutorial Date: October 2021 This tutorial builds a training and testing pipeline for a toy ML prediction problem: to predict whether a passeng

Log Labs 28 Nov 09, 2022
Price forecasting of SGB and IRFC Bonds and comparing there returns

Project_Bonds Project Title : Price forecasting of SGB and IRFC Bonds and comparing there returns. Introduction of the Project The 2008-09 global fina

Tishya S 1 Oct 28, 2021
A library to generate synthetic time series data by easy-to-use factors and generator

timeseries-generator This repository consists of a python packages that generates synthetic time series dataset in a generic way (under /timeseries_ge

Nike Inc. 87 Dec 20, 2022
A quick reference guide to the most commonly used patterns and functions in PySpark SQL

Using PySpark we can process data from Hadoop HDFS, AWS S3, and many file systems. PySpark also is used to process real-time data using Streaming and

Sundar Ramamurthy 53 Dec 21, 2022
Responsible Machine Learning with Python

Examples of techniques for training interpretable ML models, explaining ML models, and debugging ML models for accuracy, discrimination, and security.

ph_ 624 Jan 06, 2023
A complete guide to start and improve in machine learning (ML)

A complete guide to start and improve in machine learning (ML), artificial intelligence (AI) in 2021 without ANY background in the field and stay up-to-date with the latest news and state-of-the-art

Louis-François Bouchard 3.3k Jan 04, 2023
Forecasting prices using Facebook/Meta's Prophet model

CryptoForecasting using Machine and Deep learning (Part 1) CryptoForecasting using Machine Learning The main aspect of predicting the stock-related da

1 Nov 27, 2021
Implementation of different ML Algorithms from scratch, written in Python 3.x

Implementation of different ML Algorithms from scratch, written in Python 3.x

Gautam J 393 Nov 29, 2022
A high performance and generic framework for distributed DNN training

BytePS BytePS is a high performance and general distributed training framework. It supports TensorFlow, Keras, PyTorch, and MXNet, and can run on eith

Bytedance Inc. 3.3k Dec 28, 2022
Climin is a Python package for optimization, heavily biased to machine learning scenarios

climin climin is a Python package for optimization, heavily biased to machine learning scenarios distributed under the BSD 3-clause license. It works

Biomimetic Robotics and Machine Learning at Technische Universität München 177 Sep 02, 2022
Temporal Alignment Prediction for Supervised Representation Learning and Few-Shot Sequence Classification

Temporal Alignment Prediction for Supervised Representation Learning and Few-Shot Sequence Classification Introduction. This package includes the pyth

5 Dec 06, 2022