๐Ÿ‡ฐ๐Ÿ‡ท Text to Image in Korean

Overview

KoDALLE

Open In Colab Wandb Log

image-20211227151557604

Utilizing pretrained language modelโ€™s token embedding layer and position embedding layer as DALLEโ€™s text encoder.

Background

  • Training DALLE model from scratch demands large size paired dataset of images and captions. For example, OpenAI DALLE is trained with more than 250 million text-image pairs for the training.
  • If the dataset isnโ€™t large enough or is limited to specific domains, number of vocabularies in the trained DALLE model are insufficient. For instance, 1 million text captions of K-Fashion dataset only consists of more or less than 300 tokens.
  • Therefore, inferencing from such DALLE models could be problematic if the given sentence query is unconnected to the originally trained captionsโ€™ text dataset.

KoDALLE's Result on Small Size Fashion Dataset

OpenAIโ€™s DALLE KoDALLE of HappyFace
Train Dataset Size 250 Million Pairs 0.8 Million Pairs
#Params 12 Billion 428 Million
#Layers 64 Layers 16 Layers
Computing Resource 1024 x V100 16GB 1 x V100 32GB
Text Encoder 16384 Vocab x 512 Dim BPE 32000 Vocab x 1024 Dim klue/roberta-large
Image Encoder VQVAE VQGAN
Optimizer AdamW AdamW
Learning Rate 4.5e-5 3.0e-5
Weight Decay 4.5e-3 3.0e-3
LR Scheduler ReduceLROnPlateau -

The team constructed Text to Fashion Design DALLE model in Korean language with less than 100k text-image sampled pairs.

Caption ํ•˜์˜์—์„œ ์ƒ‰์ƒ์€ ์Šค์นด์ด๋ธ”๋ฃจ์ด๋‹ค. ์ƒ์˜์—์„œ ๊ธฐ์žฅ์€ ๋กฑ์ด๋‹ค. ์ƒ‰์ƒ์€ ํ™”์ดํŠธ์ด๋‹ค. ์นดํ…Œ๊ณ ๋ฆฌ๋Š” ๋ธ”๋ผ์šฐ์Šค์ด๋‹ค. ๋””ํ…Œ์ผ์—๋Š” ์…”๋ง์ด๋‹ค. ์†Œ๋งค๊ธฐ์žฅ์€ ๋ฐ˜ํŒ”์ด๋‹ค. ์†Œ์žฌ์—๋Š” ์‹คํฌ์ด๋‹ค. ํ”„๋ฆฐํŠธ์—๋Š” ๋ฌด์ง€์ด๋‹ค. ๋„ฅ๋ผ์ธ์€ ๋ธŒ์ด๋„ฅ์ด๋‹ค. ํ•์€ ๋…ธ๋ฉ€
Generated Image image
Caption ์•„์šฐํ„ฐ๋Š” ์ƒ‰์ƒ์ด ์นดํ‚ค ์†Œ์žฌ๊ฐ€ ์šฐ๋ธ ํ•์ด ๋ฃจ์ฆˆ์ธ ์ฝ”ํŠธ์ด๋‹ค. ํ•˜์˜๋Š” ์ƒ‰์ƒ์ด ๋„ค์ด๋น„ ์†Œ์žฌ๊ฐ€ ๋ฐ๋‹˜ ํ•์ด ์Šคํ‚ค๋‹ˆ์ธ ์ฒญ๋ฐ”์ง€์ด๋‹ค.
Generated Image image
Caption ํ•˜์˜์—์„œ ๊ธฐ์žฅ์€ ๋ฐœ๋ชฉ์ด๋‹ค. ์ƒ‰์ƒ์€ ๋ธ”๋ฃจ์ด๋‹ค. ์นดํ…Œ๊ณ ๋ฆฌ๋Š” ์Šค์ปคํŠธ์ด๋‹ค. ์†Œ์žฌ์—๋Š” ๋ฐ๋‹˜์ด๋‹ค. ํ•์€ ์™€์ด๋“œ์ด๋‹ค. ์ƒ์˜์—์„œ ์ƒ‰์ƒ์€ ํ™”์ดํŠธ์ด๋‹ค. ์นดํ…Œ๊ณ ๋ฆฌ๋Š” ๋ธ”๋ผ์šฐ์Šค์ด๋‹ค. ๋””ํ…Œ์ผ์—๋Š” ์…”๋ง์ด๋‹ค. ์†Œ๋งค๊ธฐ์žฅ์€ ๋ฐ˜ํŒ”์ด๋‹ค. ์†Œ์žฌ์—๋Š” ์šฐ๋ธ์ด๋‹ค.
Generated Image image
Caption ์ƒ์˜์—์„œ ๊ธฐ์žฅ์€ ๋…ธ๋ฉ€์ด๋‹ค. ์ƒ์˜์—์„œ ์ƒ‰์ƒ์€ ํ™”์ดํŠธ์ด๋‹ค. ์ƒ์˜์—์„œ ์„œ๋ธŒ์ƒ‰์ƒ์€ ๋ธ”๋ž™์ด๋‹ค. ์ƒ์˜์—์„œ ์นดํ…Œ๊ณ ๋ฆฌ๋Š” ํ‹ฐ์…”์ธ ์ด๋‹ค. ์ƒ์˜์—์„œ ์†Œ๋งค๊ธฐ์žฅ์€ ๋ฐ˜ํŒ”์ด๋‹ค. ์ƒ์˜์—์„œ ์†Œ์žฌ์—๋Š” ์ €์ง€์ด๋‹ค. ์ƒ์˜์—์„œ ํ”„๋ฆฐํŠธ์—๋Š” ๋ ˆํ„ฐ๋ง์ด๋‹ค. ์ƒ์˜์—์„œ ๋„ฅ๋ผ์ธ์€ ๋ผ์šด๋“œ๋„ฅ์ด๋‹ค. ์ƒ์˜์—์„œ ํ•์€ ๋ฃจ์ฆˆ์ด๋‹ค.
Generated Image image

Methodology

Experimentations were conducted with the following Korean Transformers Modelsโ€™ embedding layers. The team selected klue/roberta-large as baseline in the repository considering the size of the model.

KoDALLE with klue/roberta-large's wpe and wte which is trainable on 16GB GPU Google Colab environment. Hyperparams related to the DALLE's model size are following.

'BATCH_SIZE': 32
'DEPTH': 2
'TEXT_SEQ_LEN': 128
'VOCAB_SIZE': 32000
'MODEL_DIM': 1024
'ATTN_TYPES': 'full'
'DIM_HEAD': 64
'HEADS': 8

Significance

  • Offers promising result for training from scratch on specific domains with small size dataset.
  • Introduces solution for domain specific DALLE & CLIP models to be robust on input sentence.
  • Recommends adequate text-to-image model size for given computation resource.
  • Suggests effortless method of creating DALLE & CLIP model for own languages if pretrained language model is available.

WIP

  • Add image-caption reranker(EfficientNet + Klue/roberta-large)
  • Model trained with 500k text-image pairs.
  • Modulize in python code.
  • Update Inference code.
  • Update FID and IS metrics on test and validation dataset.
You might also like...
[CVPR 2021] Rethinking Text Segmentation: A Novel Dataset and A Text-Specific Refinement Approach
[CVPR 2021] Rethinking Text Segmentation: A Novel Dataset and A Text-Specific Refinement Approach

Rethinking Text Segmentation: A Novel Dataset and A Text-Specific Refinement Approach This is the repo to host the dataset TextSeg and code for TexRNe

BARTScore: Evaluating Generated Text as Text Generation
BARTScore: Evaluating Generated Text as Text Generation

This is the Repo for the paper: BARTScore: Evaluating Generated Text as Text Generation Updates 2021.06.28 Release online evaluation Demo 2021.06.25 R

Code for EMNLP 2021 main conference paper
Code for EMNLP 2021 main conference paper "Text AutoAugment: Learning Compositional Augmentation Policy for Text Classification"

Text-AutoAugment (TAA) This repository contains the code for our paper Text AutoAugment: Learning Compositional Augmentation Policy for Text Classific

a reccurrent neural netowrk that when trained on a peice of text and fed a starting prompt will write its on 250 character text using LSTM layers

RNN-Playwrite a reccurrent neural netowrk that when trained on a peice of text and fed a starting prompt will write its on 250 character text using LS

Codes to pre-train T5 (Text-to-Text Transfer Transformer) models pre-trained on Japanese web texts

t5-japanese Codes to pre-train T5 (Text-to-Text Transfer Transformer) models pre-trained on Japanese web texts. The following is a list of models that

Siamese-nn-semantic-text-similarity - A repository containing comprehensive Neural Networks based PyTorch implementations for the semantic text similarity task Automatic number plate recognition using tech:  Yolo, OCR, Scene text detection, scene text recognation, flask, torch
Automatic number plate recognition using tech: Yolo, OCR, Scene text detection, scene text recognation, flask, torch

Automatic Number Plate Recognition Automatic Number Plate Recognition (ANPR) is the process of reading the characters on the plate with various optica

Simple command line tool for text to image generation using OpenAI's CLIP and Siren (Implicit neural representation network)
Simple command line tool for text to image generation using OpenAI's CLIP and Siren (Implicit neural representation network)

Deep Daze mist over green hills shattered plates on the grass cosmic love and attention a time traveler in the crowd life during the plague meditative

Implementation / replication of DALL-E, OpenAI's Text to Image Transformer, in Pytorch
Implementation / replication of DALL-E, OpenAI's Text to Image Transformer, in Pytorch

DALL-E in Pytorch Implementation / replication of DALL-E, OpenAI's Text to Image Transformer, in Pytorch. It will also contain CLIP for ranking the ge

Comments
  • Koclip apply in KoDALLE

    Koclip apply in KoDALLE

    ๋ณ€๊ฒฝ์‚ฌํ•ญ

    add) model.py

    ํ˜„์ˆ˜๋‹˜์˜ KoCLIP์ด DALLE Roberta ์—์„œ ์ž‘๋™ํ•˜๊ฒŒ๋” ์ฝ”๋“œ๋ฅผ ์ˆ˜์ •ํ•œ ํŒŒ์ผ์ž…๋‹ˆ๋‹ค.

    dev branch์— ์กด์žฌํ•˜๋Š” model.py ๋น„๊ตํ•˜๋ฉด์„œ ์ˆ˜์ •์ด ํ•„์š”ํ•ฉ๋‹ˆ๋‹ค.

    add) generate.ipynb

    KoCLIP์ด ์ž‘๋™ํ•˜๋Š”๊ฒƒ์„ ๋ณผ ์ˆ˜ ์žˆ๋„๋ก ๋งŒ๋“  ์ฝ”๋“œ์ž…๋‹ˆ๋‹ค.

    opened by JoonHong-Kim 1
  • add: KoCLIP codes

    add: KoCLIP codes

    ๋ณ€๊ฒฝ์‚ฌํ•ญ:

    refactor) clipmodel.py

    • CLIPModel ์ตœ์ข… ๋ฒ„์ „์œผ๋กœ ์ˆ˜์ •
    • clip folder๋กœ ์ด๋™

    add) clip/train_clip.py

    • CLIP ๋ชจ๋ธ ํ•™์Šต์— ์‚ฌ์šฉํ•œ ์ฝ”๋“œ์ž…๋‹ˆ๋‹ค

    add) clip/dataloader.py

    • CLIP ๋ชจ๋ธ ํ•™์Šต์— ์‚ฌ์šฉํ•œ dataloader ํ•จ์ˆ˜์ž…๋‹ˆ๋‹ค.
    opened by shawnhyeonsoo 0
  • add skip_sample in TextImageDataset

    add skip_sample in TextImageDataset

    ๋ณ€๊ฒฝ์‚ฌํ•ญ

    modify) loader.py

    • TextImageDataset์—์„œ texts, image๋ฅผ ๋ถˆ๋Ÿฌ์˜ฌ ๋•Œ, data๊ฐ€ ์—†์„ ๊ฒฝ์šฐ ๋ฐœ์ƒํ•˜๋Š” ์—๋Ÿฌ ์ฒ˜๋ฆฌ
    • skip_sample ํ•จ์ˆ˜๋ฅผ ํ™œ์šฉํ•˜์—ฌ error๊ฐ€ ๋ฐœ์ƒํ•  ๊ฒฝ์šฐ, random ํ˜น์€ ๋‹ค์Œ index๋กœ ๋ณ€ํ™˜ํ•˜์—ฌ skip
    • ๊ธฐ์กด train_dalle_gpt_roberta.py๋ฅผ ๋ฐ”ํƒ•์œผ๋กœ ์ˆ˜์ •
    opened by jjonhwa 0
Releases(v0.1.0-beta)
A strongly-typed genetic programming framework for Python

monkeys "If an army of monkeys were strumming on typewriters they might write all the books in the British Museum." monkeys is a framework designed to

H. Chase Stevens 115 Nov 27, 2022
YOLOv2 in PyTorch

YOLOv2 in PyTorch NOTE: This project is no longer maintained and may not compatible with the newest pytorch (after 0.4.0). This is a PyTorch implement

Long Chen 1.5k Jan 02, 2023
Code for weakly supervised segmentation of a single class

SingleClassRL Implementation of weak single object segmentation from paper "Regularized Loss for Weakly Supervised Single Class Semantic Segmentation"

16 Nov 14, 2022
Official implementation of the ICML2021 paper "Elastic Graph Neural Networks"

ElasticGNN This repository includes the official implementation of ElasticGNN in the paper "Elastic Graph Neural Networks" [ICML 2021]. Xiaorui Liu, W

liuxiaorui 34 Dec 04, 2022
Progressive Coordinate Transforms for Monocular 3D Object Detection

Progressive Coordinate Transforms for Monocular 3D Object Detection This repository is the official implementation of PCT. Introduction In this paper,

58 Nov 06, 2022
Official repository for "Deep Recurrent Neural Network with Multi-scale Bi-directional Propagation for Video Deblurring".

RNN-MBP Deep Recurrent Neural Network with Multi-scale Bi-directional Propagation for Video Deblurring (AAAI-2022) by Chao Zhu, Hang Dong, Jinshan Pan

SIV-LAB 22 Aug 31, 2022
This is the official PyTorch implementation for "Mesa: A Memory-saving Training Framework for Transformers".

Mesa: A Memory-saving Training Framework for Transformers This is the official PyTorch implementation for Mesa: A Memory-saving Training Framework for

Zhuang AI Group 105 Dec 06, 2022
Civsim is a basic civilisation simulation and modelling system built in Python 3.8.

Civsim Introduction Civsim is a basic civilisation simulation and modelling system built in Python 3.8. It requires the following packages: perlin_noi

17 Aug 08, 2022
In the AI for TSP competition we try to solve optimization problems using machine learning.

AI for TSP Competition Goal In the AI for TSP competition we try to solve optimization problems using machine learning. The competition will be hosted

Paulo da Costa 11 Nov 27, 2022
This repository contains a pytorch implementation of "StereoPIFu: Depth Aware Clothed Human Digitization via Stereo Vision".

StereoPIFu: Depth Aware Clothed Human Digitization via Stereo Vision | Project Page | Paper | This repository contains a pytorch implementation of "St

87 Dec 09, 2022
Code accompanying the NeurIPS 2021 paper "Generating High-Quality Explanations for Navigation in Partially-Revealed Environments"

Generating High-Quality Explanations for Navigation in Partially-Revealed Environments This work presents an approach to explainable navigation under

RAIL Group @ George Mason University 1 Oct 28, 2022
Image Segmentation and Object Detection in Pytorch

Image Segmentation and Object Detection in Pytorch Pytorch-Segmentation-Detection is a library for image segmentation and object detection with report

Daniil Pakhomov 732 Dec 10, 2022
DeepSTD: Mining Spatio-temporal Disturbances of Multiple Context Factors for Citywide Traffic Flow Prediction

DeepSTD: Mining Spatio-temporal Disturbances of Multiple Context Factors for Citywide Traffic Flow Prediction This is the implementation of DeepSTD in

5 Sep 26, 2022
An implementation of quantum convolutional neural network with MindQuantum. Huawei, classifying MNIST dataset

ๅ…ณไบŽๅฎž็Žฐ็š„ไธ€็‚น่ฏดๆ˜Ž ๅฑฑไธœๅคงๅญฆ 2020็บง ่‹ๅšๅ— www.subonan.com ๆ–‡ไปถ่ฏดๆ˜Ž tools.py ่ฟ™้‡Œ้ขไธป่ฆๆœ‰ไธคไธชๅ‡ฝๆ•ฐ๏ผš resize(a, lenb) ่ฟ™ๅ…ถๅฎžๆ˜ฏๆˆ‘ๆ‰พๅŒๅญฆๅ†™็š„ไธ€ไธชๅฐ็ฎ—ๆณ•hhhใ€‚็ป™ๅ‡บไธ€ไธช$28\times 28$็š„ๆ–น้˜ตa๏ผŒ่ฟ”ๅ›žไธ€ไธช$lenb\times lenb$็š„ๆ–น้˜ตใ€‚ๅ› 

ใผใฃใ‘ใชใ™ 2 Aug 29, 2022
Dimension Reduced Turbulent Flow Data From Deep Vector Quantizers

Dimension Reduced Turbulent Flow Data From Deep Vector Quantizers This is an implementation of A Physics-Informed Vector Quantized Autoencoder for Dat

DreamSoul 3 Sep 12, 2022
A PaddlePaddle version image model zoo.

Paddle-Image-Models English | ็ฎ€ไฝ“ไธญๆ–‡ A PaddlePaddle version image model zoo. Install Package Install by pip๏ผš $ pip install ppim Install by wheel package

AgentMaker 131 Dec 07, 2022
Investigating Attention Mechanism in 3D Point Cloud Object Detection (arXiv 2021)

Investigating Attention Mechanism in 3D Point Cloud Object Detection (arXiv 2021) This repository is for the following paper: "Investigating Attention

52 Nov 19, 2022
Keras code and weights files for popular deep learning models.

Trained image classification models for Keras THIS REPOSITORY IS DEPRECATED. USE THE MODULE keras.applications INSTEAD. Pull requests will not be revi

Franรงois Chollet 7.2k Dec 29, 2022
A Graph Neural Network Tool for Recovering Dense Sub-graphs in Random Dense Graphs.

PYGON A Graph Neural Network Tool for Recovering Dense Sub-graphs in Random Dense Graphs. Installation This code requires to install and run the graph

Yoram Louzoun's Lab 0 Jun 25, 2021
Dynamic Token Normalization Improves Vision Transformers

Dynamic Token Normalization Improves Vision Transformers This is the PyTorch implementation of the paper Dynamic Token Normalization Improves Vision T

Wenqi Shao 20 Oct 09, 2022