Train 🤗-transformers model with Poutyne.

Overview

poutyne-transformers

Train 🤗 -transformers models with Poutyne.

Installation

pip install poutyne-transformers

Example

import torch
from transformers import AutoModelForSequenceClassification, AutoTokenizer
from datasets import load_dataset
from torch.utils.data import DataLoader
from torch import optim
from poutyne import Model
from poutyne_transformers import TransformerCollator, model_loss, ModelWrapper

print('Loading model & tokenizer.')
transformer = AutoModelForSequenceClassification.from_pretrained('distilbert-base-cased', num_labels=2, return_dict=True)
tokenizer = AutoTokenizer.from_pretrained('distilbert-base-cased')

print('Loading & preparing dataset.')
dataset = load_dataset("imdb")
dataset = dataset.map(lambda entry: tokenizer(entry['text'], add_special_tokens=True, padding='max_length', truncation=True), batched=True)
dataset = dataset.remove_columns(['text'])
dataset.set_format('torch')

collate_fn = TransformerCollator()
train_dataloader = DataLoader(dataset['train'], batch_size=16, collate_fn=collate_fn)
test_dataloader = DataLoader(dataset['test'], batch_size=16, collate_fn=collate_fn)

print('Preparing training.')
wrapped_transformer = ModelWrapper(transformer)
optimizer = optim.AdamW(wrapped_transformer.parameters(), lr=5e-5)
device = torch.device('cuda:0' if torch.cuda.is_available() else "cpu")
model = Model(wrapped_transformer, optimizer, loss_function=model_loss, device=device)

print('Starting training.')
model.fit_generator(train_dataloader, test_dataloader, epochs=1)
Owner
Lennart Keller
currently studying digital humanities and political and social studies at JMU Würzburg
Lennart Keller
Command Line Text-To-Speech using Google TTS

cli-tts Thanks to gTTS by @pndurette! This is an interactive command line text-to-speech tool using Google TTS. Just type text and the voice will be p

ReekyStive 3 Nov 11, 2022
MASS: Masked Sequence to Sequence Pre-training for Language Generation

MASS: Masked Sequence to Sequence Pre-training for Language Generation

Microsoft 1.1k Dec 17, 2022
PortaSpeech - PyTorch Implementation

PortaSpeech - PyTorch Implementation PyTorch Implementation of PortaSpeech: Portable and High-Quality Generative Text-to-Speech. Model Size Module Nor

Keon Lee 276 Dec 26, 2022
Code for the paper "A Simple but Tough-to-Beat Baseline for Sentence Embeddings".

Code for the paper "A Simple but Tough-to-Beat Baseline for Sentence Embeddings".

1.1k Dec 27, 2022
Code for the Findings of NAACL 2022(Long Paper): AdapterBias: Parameter-efficient Token-dependent Representation Shift for Adapters in NLP Tasks

AdapterBias: Parameter-efficient Token-dependent Representation Shift for Adapters in NLP Tasks arXiv link: upcoming To be published in Findings of NA

Allen 16 Nov 12, 2022
Conditional probing: measuring usable information beyond a baseline

Conditional probing: measuring usable information beyond a baseline

John Hewitt 20 Dec 15, 2022
Making text a first-class citizen in TensorFlow.

TensorFlow Text - Text processing in Tensorflow IMPORTANT: When installing TF Text with pip install, please note the version of TensorFlow you are run

1k Dec 26, 2022
CredData is a set of files including credentials in open source projects

CredData is a set of files including credentials in open source projects. CredData includes suspicious lines with manual review results and more information such as credential types for each suspicio

Samsung 19 Sep 07, 2022
Practical Machine Learning with Python

Master the essential skills needed to recognize and solve complex real-world problems with Machine Learning and Deep Learning by leveraging the highly popular Python Machine Learning Eco-system.

Dipanjan (DJ) Sarkar 2k Jan 08, 2023
Natural Language Processing Specialization

Natural Language Processing Specialization In this folder, Natural Language Processing Specialization projects and notes can be found. WHAT I LEARNED

Kaan BOKE 3 Oct 06, 2022
a test times augmentation toolkit based on paddle2.0.

Patta Image Test Time Augmentation with Paddle2.0! Input | # input batch of images / / /|\ \ \ # apply

AgentMaker 110 Dec 03, 2022
Code-autocomplete, a code completion plugin for Python

Code AutoComplete code-autocomplete, a code completion plugin for Python.

xuming 13 Jan 07, 2023
Example code for "Real-World Natural Language Processing"

Real-World Natural Language Processing This repository contains example code for the book "Real-World Natural Language Processing." AllenNLP (2.5.0 or

Masato Hagiwara 303 Dec 17, 2022
Universal End2End Training Platform, including pre-training, classification tasks, machine translation, and etc.

背景 安装教程 快速上手 (一)预训练模型 (二)机器翻译 (三)文本分类 TenTrans 进阶 1. 多语言机器翻译 2. 跨语言预训练 背景 TrenTrans是一个统一的端到端的多语言多任务预训练平台,支持多种预训练方式,以及序列生成和自然语言理解任务。 安装教程 git clone git

Tencent Minority-Mandarin Translation Team 42 Dec 20, 2022
hashily is a Python module that provides a variety of text decoding and encoding operations.

hashily is a python module that performs a variety of text decoding and encoding functions. It also various functions for encrypting and decrypting text using various ciphers.

DevMysT 5 Jul 17, 2022
Idea is to build a model which will take keywords as inputs and generate sentences as outputs.

keytotext Idea is to build a model which will take keywords as inputs and generate sentences as outputs. Potential use case can include: Marketing Sea

Gagan Bhatia 364 Jan 03, 2023
A flask application to predict the speech emotion of any .wav file.

This is a speech emotion recognition app. It will allow you to train a modular MLP model with the RAVDESS dataset, and then use that model with a flask application to predict the speech emotion of an

Aryan Vijaywargia 2 Dec 15, 2021
Implementaion of our ACL 2022 paper Bridging the Data Gap between Training and Inference for Unsupervised Neural Machine Translation

Bridging the Data Gap between Training and Inference for Unsupervised Neural Machine Translation This is the implementaion of our paper: Bridging the

hezw.tkcw 20 Dec 12, 2022
Seonghwan Kim 24 Sep 11, 2022
Exploring dimension-reduced embeddings

sleepwalk Exploring dimension-reduced embeddings This is the code repository. See here for the Sleepwalk web page. License and disclaimer This program

S. Anders's research group at ZMBH 91 Nov 29, 2022