Deep Multimodal Neural Architecture Search

Related tags

Deep Learningmmnas
Overview

MMNas: Deep Multimodal Neural Architecture Search

This repository corresponds to the PyTorch implementation of the MMnas for visual question answering (VQA), visual grounding (VGD), and image-text matching (ITM) tasks.

example-image

Prerequisites

Software and Hardware Requirements

You may need a machine with at least 4 GPU (>= 8GB), 50GB memory for VQA and VGD and 150GB for ITM and 50GB free disk space. We strongly recommend to use a SSD drive to guarantee high-speed I/O.

You should first install some necessary packages.

  1. Install Python >= 3.6

  2. Install Cuda >= 9.0 and cuDNN

  3. Install PyTorch >= 0.4.1 with CUDA (Pytorch 1.x is also supported).

  4. Install SpaCy and initialize the GloVe as follows:

    $ pip install -r requirements.txt
    $ wget https://github.com/explosion/spacy-models/releases/download/en_vectors_web_lg-2.1.0/en_vectors_web_lg-2.1.0.tar.gz -O en_vectors_web_lg-2.1.0.tar.gz
    $ pip install en_vectors_web_lg-2.1.0.tar.gz

Dataset Preparations

Please follow the instructions in dataset_setup.md to download the datasets and features.

Search

To search an optimal architecture for a specific task, run

$ python3 search_[vqa|vgd|vqa].py

At the end of each searching epoch, we will output the optimal architecture (choosing operators with largest architecture weight for every block) accroding to current architecture weights. When the optimal architecture doesn't change for several continuous epochs, you can kill the searching process manually.

Training

The following script will start training network with the optimal architecture that we've searched by MMNas:

$ python3 train_[vqa|vgd|itm].py --RUN='train' --ARCH_PATH='./arch/train_vqa.json'

To add:

  1. --VERSION=str, e.g.--VERSION='mmnas_vqa' to assign a name for your this model.

  2. --GPU=str, e.g.--GPU='0, 1, 2, 3' to train the model on specified GPU device.

  3. --NW=int, e.g.--NW=8 to accelerate I/O speed.

  1. --RESUME to start training with saved checkpoint parameters.

  2. --ARCH_PATH can use the different searched architectures.

If you want to evaluate an architecture that you got from seaching stage, for example, it's the output architecture at the 50-th searching epoch for vqa model, you can run

$ python3 train_vqa.py --RUN='train' --ARCH_PATH='[PATH_TO_YOUR_SEARCHING_LOG]' --ARCH_EPOCH=50

Validation and Testing

Offline Evaluation

It's convenient to modify follows args: --RUN={'val', 'test'} --CKPT_PATH=[Your Model Path] to Run val or test Split.

Example:

$ python3 train_vqa.py --RUN='test' --CKPT_PATH=[Your Model Path] --ARCH_PATH=[Searched Architecture Path]

Online Evaluation (ONLY FOR VQA)

Test Result files will stored in ./logs/ckpts/result_test/result_train_[Your Version].json

You can upload the obtained result file to Eval AI to evaluate the scores on test-dev and test-std splits.

Pretrained Models

We provide the pretrained models in pretrained_models.md to reproduce the experimental results in our paper.

Citation

If this repository is helpful for your research, we'd really appreciate it if you could cite the following paper:

@article{yu2020mmnas,
  title={Deep Multimodal Neural Architecture Search},
  author={Yu, Zhou and Cui, Yuhao and Yu, Jun and Wang, Meng and Tao, Dacheng and Tian, Qi},
  journal={Proceedings of the 28th ACM International Conference on Multimedia},
  pages = {3743--3752},
  year={2020}
}
Owner
Vision and Language Group@ MIL
Hangzhou Dianzi University
Vision and Language Group@ MIL
Keras-tensorflow implementation of Fully Convolutional Networks for Semantic Segmentation(Unfinished)

Keras-FCN Fully convolutional networks and semantic segmentation with Keras. Models Models are found in models.py, and include ResNet and DenseNet bas

645 Dec 29, 2022
Python based framework for Automatic AI for Regression and Classification over numerical data.

Python based framework for Automatic AI for Regression and Classification over numerical data. Performs model search, hyper-parameter tuning, and high-quality Jupyter Notebook code generation.

BlobCity, Inc 141 Dec 21, 2022
For holding anime-related object classification and detection models

Animesion An end-to-end framework for anime-related object classification, detection, segmentation, and other models. Update: 01/22/2020. Due to time-

Edwin Arkel Rios 72 Nov 30, 2022
Official Pytorch implementation for Deep Contextual Video Compression, NeurIPS 2021

Introduction Official Pytorch implementation for Deep Contextual Video Compression, NeurIPS 2021 Prerequisites Python 3.8 and conda, get Conda CUDA 11

51 Dec 03, 2022
Just playing with getting CLIP Guided Diffusion running locally, rather than having to use colab.

CLIP-Guided-Diffusion Just playing with getting CLIP Guided Diffusion running locally, rather than having to use colab. Original colab notebooks by Ka

Nerdy Rodent 336 Dec 09, 2022
public repo for ESTER dataset and modeling (EMNLP'21)

Project / Paper Introduction This is the project repo for our EMNLP'21 paper: https://arxiv.org/abs/2104.08350 Here, we provide brief descriptions of

PlusLab 19 Oct 27, 2022
AVD Quickstart Containerlab

AVD Quickstart Containerlab WARNING This repository is still under construction. It's fully functional, but has number of limitations. For example: RE

Carl Buchmann 3 Apr 10, 2022
YOLO-v5 기반 단안 카메라의 영상을 활용해 차간 거리를 일정하게 유지하며 주행하는 Adaptive Cruise Control 기능 구현

자율 주행차의 영상 기반 차간거리 유지 개발 Table of Contents 프로젝트 소개 주요 기능 시스템 구조 디렉토리 구조 결과 실행 방법 참조 팀원 프로젝트 소개 YOLO-v5 기반으로 단안 카메라의 영상을 활용해 차간 거리를 일정하게 유지하며 주행하는 Adap

14 Jun 29, 2022
Implementation of 🦩 Flamingo, state-of-the-art few-shot visual question answering attention net out of Deepmind, in Pytorch

🦩 Flamingo - Pytorch Implementation of Flamingo, state-of-the-art few-shot visual question answering attention net, in Pytorch. It will include the p

Phil Wang 630 Dec 28, 2022
Neural Network Libraries

Neural Network Libraries Neural Network Libraries is a deep learning framework that is intended to be used for research, development and production. W

Sony 2.6k Dec 30, 2022
ISNAS-DIP: Image Specific Neural Architecture Search for Deep Image Prior [CVPR 2022]

ISNAS-DIP: Image-Specific Neural Architecture Search for Deep Image Prior (CVPR 2022) Metin Ersin Arican*, Ozgur Kara*, Gustav Bredell, Ender Konukogl

Özgür Kara 24 Dec 18, 2022
Sub-tomogram-Detection - Deep learning based model for Cyro ET Sub-tomogram-Detection

Deep learning based model for Cyro ET Sub-tomogram-Detection High degree of stru

Siddhant Kumar 2 Feb 04, 2022
Automatically download the cwru data set, and then divide it into training data set and test data set

Automatically download the cwru data set, and then divide it into training data set and test data set.自动下载cwru数据集,然后分训练数据集和测试数据集

6 Jun 27, 2022
ProMP: Proximal Meta-Policy Search

ProMP: Proximal Meta-Policy Search Implementations corresponding to ProMP (Rothfuss et al., 2018). Overall this repository consists of two branches: m

Jonas Rothfuss 212 Dec 20, 2022
DeepGNN is a framework for training machine learning models on large scale graph data.

DeepGNN Overview DeepGNN is a framework for training machine learning models on large scale graph data. DeepGNN contains all the necessary features in

Microsoft 45 Jan 01, 2023
A Free and Open Source Python Library for Multiobjective Optimization

Platypus What is Platypus? Platypus is a framework for evolutionary computing in Python with a focus on multiobjective evolutionary algorithms (MOEAs)

Project Platypus 424 Dec 18, 2022
Python 3 module to print out long strings of text with intervals of time inbetween

Python-Fastprint Python 3 module to print out long strings of text with intervals of time inbetween Install: pip install fastprint Sync Usage: from fa

Kainoa Kanter 2 Jun 27, 2022
A PyTorch Extension: Tools for easy mixed precision and distributed training in Pytorch

This repository holds NVIDIA-maintained utilities to streamline mixed precision and distributed training in Pytorch. Some of the code here will be included in upstream Pytorch eventually. The intenti

NVIDIA Corporation 6.9k Jan 03, 2023
Dynamic Environments with Deformable Objects (DEDO)

DEDO - Dynamic Environments with Deformable Objects DEDO is a lightweight and customizable suite of environments with deformable objects. It is aimed

Rika 32 Dec 22, 2022
시각 장애인을 위한 스마트 지팡이에 활용될 딥러닝 모델 (DL Model Repo)

SmartCane-DL-Model Smart Cane using semantic segmentation 참고한 Github repositoy 🔗 https://github.com/JunHyeok96/Road-Segmentation.git 데이터셋 🔗 https://

반드시 졸업한다 (Team Just Graduate) 4 Dec 03, 2021