MLReef is an open source ML-Ops platform that helps you collaborate, reproduce and share your Machine Learning work with thousands of other users.

Overview

The collaboration platform for Machine Learning

MLReef is an open source ML-Ops platform that helps you collaborate, reproduce and share your Machine Learning work with thousands of other users.


MLReef

MLReef is a ML/DL development platform containing four main sections:

  • Data-Management - Fully versioned data hosting and processing infrastructure
  • Publishing code repositories - Containerized and versioned script repositories for immutable use in data pipelines
  • Experiment Manager - Experiment tracking, environments and results
  • ML-Ops - Pipelines & Orchestration solution for ML/DL jobs (K8s / Cloud / bare-metal)


To find out more about how MLReef can streamline your Machine Learning Development Lifecycle visit our homepage

Data Management

  • Host your data using git / git LFS repositories.
    • Work concurrently on data
    • Fully versioned or LFS version control
    • Full view on data processing and visualization history
  • Connect your external storage to MLReef and use your data directly in pipelines
  • Data set management (access, history, pipelines)

Publishing Code

Adding only parameter annotations to your code...

# example of parameter annotation for a image crop function
 @data_processor(
        name="Resnet50",
        author="MLReef",
        command="resnet50",
        type="ALGORITHM",
        description="CNN Model resnet50",
        visibility="PUBLIC",
        input_type="IMAGE",
        output_type="MODEL"
    )
    @parameter(name='input-path', type='str', required=True, defaultValue='train', description="input path")
    @parameter(name='output-path', type='str', required=True, defaultValue='output', description="output path")
    @parameter(name='height', type='int', required=True, defaultValue=224, description="height of cropped images in px")
    @parameter(name='width', type='int', required=True, defaultValue=224, description="width of cropped images in px")
    def init_params():
        pass

...and publishing your scripts gets you the following:

  • Containerization of your scripts
    • Always working scripts including easy hyperparameter access in pipelines
    • Execution environment (including specific packages & versions)
    • Hyper-parameters
      • ArgParser for command line parameters with currently used values
      • Explicit parameters dictionary
      • Input validation and guides
  • Multiple containers based on version and code branches

Experiment Manager

  • Complete experiment setup log
    • Full source control info including non-committed local changes
    • Execution environment (including specific packages & versions)
    • Hyper-parameters
  • Full experiment output automatic capture
    • Artifacts storage and standard-output logs
    • Performance metrics on individual experiments and comparative graphs for all experiments
    • Detailed view on logs and outputs generated
  • Extensive platform support and integrations

ML-Ops

  • Concurrent computing pipelining
  • Governance and control
    • Access and user management
    • Single permission management
    • Resource management
  • Model management

MLReef Architecture

The MLReef ML components within the ML life cycle:

  • Data Storage components based currently on Git and Git LFS.
  • Model development based on working modules (published by the community or your team), data management, data processing / data visualization / experiment pipeline on hosted or on-prem and model management.
  • ML-Ops orchestration, experiment and workflow reproducibility, and scalability.

Why MLReef?

MLReef is our solution to a problem we share with countless other researchers and developers in the machine learning/deep learning universe: Training production-grade deep learning models is a tangled process. MLReef tracks and controls the process by associating code version control, research projects, performance metrics, and model provenance.

We designed MLReef on best data science practices combined with the knowleged gained from DevOps and a deep focus on collaboration.

  • Use it on a daily basis to boost collaboration and visibility in your team
  • Create a job in the cloud from any code repository with a click of a button
  • Automate processes and create pipelines to collect your experimentation logs, outputs, and data
  • Make you ML life cycle transparent by cataloging it all on the MLReef platform

Getting Started as a Developer

To start developing, continue with the developer guide

Canonical source

The canonical source of MLReef where all development takes place is hosted on gitLab.com/mlreef/mlreef.

License

MIT License (see the License for more information)

Documentation, Community and Support

More information in the official documentation and on Youtube.

For examples and use cases, check these use cases or start the tutorial after registring:

If you have any questions: post on our Slack channel, or tag your questions on stackoverflow with 'mlreef' tag.

For feature requests or bug reports, please use GitLab issues.

Additionally, you can always reach out to us via [email protected]

Contributing

Merge Requests are always welcomed ❤️ See more details in the MLReef Contribution Guidelines.

Owner
MLReef
Your entire Machine Learning life cycle in one platform.
MLReef
Machine learning model evaluation made easy: plots, tables, HTML reports, experiment tracking and Jupyter notebook analysis.

sklearn-evaluation Machine learning model evaluation made easy: plots, tables, HTML reports, experiment tracking, and Jupyter notebook analysis. Suppo

Eduardo Blancas 354 Dec 31, 2022
pure-predict: Machine learning prediction in pure Python

pure-predict speeds up and slims down machine learning prediction applications. It is a foundational tool for serverless inference or small batch prediction with popular machine learning frameworks l

Ibotta 84 Dec 29, 2022
In this Repo a simple Sklearn Model will be trained and pushed to MLFlow

SKlearn_to_MLFLow In this Repo a simple Sklearn Model will be trained and pushed to MLFlow Install This Repo is based on poetry python3 -m venv .venv

1 Dec 13, 2021
Used Logistic Regression, Random Forest, and XGBoost to predict the outcome of Search & Destroy games from the Call of Duty World League for the 2018 and 2019 seasons.

Call of Duty World League: Search & Destroy Outcome Predictions Growing up as an avid Call of Duty player, I was always curious about what factors led

Brett Vogelsang 2 Jan 18, 2022
slim-python is a package to learn customized scoring systems for decision-making problems.

slim-python is a package to learn customized scoring systems for decision-making problems. These are simple decision aids that let users make yes-no p

Berk Ustun 37 Nov 02, 2022
This repo implements a Topological SLAM: Deep Visual Odometry with Long Term Place Recognition (Loop Closure Detection)

This repo implements a topological SLAM system. Deep Visual Odometry (DF-VO) and Visual Place Recognition are combined to form the topological SLAM system.

Best of Australian Centre for Robotic Vision (ACRV) 32 Jun 23, 2022
This jupyter notebook project was completed by me and my friend using the dataset from Kaggle

ARM This jupyter notebook project was completed by me and my friend using the dataset from Kaggle. The world Happiness 2017, which ranks 155 countries

1 Jan 23, 2022
A repository to index and organize the latest machine learning courses found on YouTube.

📺 ML YouTube Courses At DAIR.AI we ❤️ open education. We are excited to share some of the best and most recent machine learning courses available on

DAIR.AI 9.6k Jan 01, 2023
Warren - Stock Price Predictor

Web app to predict closing stock prices in real time using Facebook's Prophet time series algorithm with a multi-variate, single-step time series forecasting strategy.

Kumar Nityan Suman 153 Jan 03, 2023
Automatic extraction of relevant features from time series:

tsfresh This repository contains the TSFRESH python package. The abbreviation stands for "Time Series Feature extraction based on scalable hypothesis

Blue Yonder GmbH 7k Jan 06, 2023
Tools for mathematical optimization region

Tools for mathematical optimization region

林景 15 Nov 30, 2022
Machine Learning Course with Python:

A Machine Learning Course with Python Table of Contents Download Free Deep Learning Resource Guide Slack Group Introduction Motivation Machine Learnin

Instill AI 6.9k Jan 03, 2023
A statistical library designed to fill the void in Python's time series analysis capabilities, including the equivalent of R's auto.arima function.

pmdarima Pmdarima (originally pyramid-arima, for the anagram of 'py' + 'arima') is a statistical library designed to fill the void in Python's time se

alkaline-ml 1.3k Jan 06, 2023
Lightweight Machine Learning Experiment Logging 📖

Simple logging of statistics, model checkpoints, plots and other objects for your Machine Learning Experiments (MLE). Furthermore, the MLELogger comes with smooth multi-seed result aggregation and co

Robert Lange 65 Dec 08, 2022
Transpile trained scikit-learn estimators to C, Java, JavaScript and others.

sklearn-porter Transpile trained scikit-learn estimators to C, Java, JavaScript and others. It's recommended for limited embedded systems and critical

Darius Morawiec 1.2k Jan 05, 2023
Toolss - Automatic installer of hacking tools (ONLY FOR TERMUKS!)

Tools Автоматический установщик хакерских утилит (ТОЛЬКО ДЛЯ ТЕРМУКС!) Оригиналь

14 Jan 05, 2023
MCML is a toolkit for semi-supervised dimensionality reduction and quantitative analysis of Multi-Class, Multi-Label data

MCML is a toolkit for semi-supervised dimensionality reduction and quantitative analysis of Multi-Class, Multi-Label data. We demonstrate its use

Pachter Lab 26 Nov 29, 2022
Open-Source CI/CD platform for ML teams. Deliver ML products, better & faster. ⚡️🧑‍🔧

Deliver ML products, better & faster Giskard is an Open-Source CI/CD platform for ML teams. Inspect ML models visually from your Python notebook 📗 Re

Giskard 335 Jan 04, 2023
Built various Machine Learning algorithms (Logistic Regression, Random Forest, KNN, Gradient Boosting and XGBoost. etc)

Built various Machine Learning algorithms (Logistic Regression, Random Forest, KNN, Gradient Boosting and XGBoost. etc). Structured a custom ensemble model and a neural network. Found a outperformed

Chris Yuan 1 Feb 06, 2022
Deepchecks is a Python package for comprehensively validating your machine learning models and data with minimal effort

Deepchecks is a Python package for comprehensively validating your machine learning models and data with minimal effort

2.3k Jan 04, 2023