💬 Python scripts to parse Messenger, Hangouts, WhatsApp and Telegram chat logs into DataFrames.

Overview

Chatistics

Python 3 scripts to convert chat logs from various messaging platforms into Pandas DataFrames. Can also generate histograms and word clouds from the chat logs.

Changelog

10 Jan 2020: UPDATED ALL THE THINGS! Thanks to mar-muel and manueth, pretty much everything has been updated and improved, and WhatsApp is now supported!

21 Oct 2018: Updated Facebook Messenger and Google Hangouts parsers to make them work with the new exported file formats.

9 Feb 2018: Telegram support added thanks to bmwant.

24 Oct 2016: Initial release supporting Facebook Messenger and Google Hangouts.

Support Matrix

Platform Direct Chat Group Chat
Facebook Messenger ✔ ✘
Google Hangouts ✔ ✘
Telegram ✔ ✘
WhatsApp ✔ ✔

Exported data

Data exported for each message regardless of the platform:

Column Content
timestamp UNIX timestamp (in seconds)
conversationId A conversation ID, unique by platform
conversationWithName Name of the other people in a direct conversation, or name of the group conversation
senderName Name of the sender
outgoing Boolean value whether the message is outgoing/coming from owner
text Text of the message
language Language of the conversation as inferred by langdetect
platform Platform (see support matrix above)

Exporting your chat logs

1. Download your chat logs

Google Hangouts

Warning: Google Hangouts archives can take a long time to be ready for download - up to one hour in our experience.

  1. Go to Google Takeout: https://takeout.google.com/settings/takeout
  2. Request an archive containing your Hangouts chat logs
  3. Download the archive, then extract the file called Hangouts.json
  4. Move it to ./raw_data/hangouts/

Facebook Messenger

Warning: Facebook archives can take a very long time to be ready for download - up to 12 hours! They can weight several gigabytes. Start with an archive containing just a few months of data if you want to quickly get started, this shouldn't take more than a few minutes to complete.

  1. Go to the page "Your Facebook Information": https://www.facebook.com/settings?tab=your_facebook_information
  2. Click on "Download Your Information"
  3. Select the date range you want. The format must be JSON. Media won't be used, so you can set the quality to "Low" to speed things up.
  4. Click on "Deselect All", then scroll down to select "Messages" only
  5. Click on "Create File" at the top of the list. It will take Facebook a while to generate your archive.
  6. Once the archive is ready, download and extract it, then move the content of the messages folder into ./raw_data/messenger/

WhatsApp

Unfortunately, WhatsApp only lets you export your conversations from your phone and one by one.

  1. On your phone, open the chat conversation you want to export
  2. On Android, tap on â‹® > More > Export chat. On iOS, tap on the interlocutor's name > Export chat
  3. Choose "Without Media"
  4. Send chat to yourself eg via Email
  5. Unpack the archive and add the individual .txt files to the folder ./raw_data/whatsapp/

Telegram

The Telegram API works differently: you will first need to setup Chatistics, then query your chat logs programmatically. This process is documented below. Exporting Telegram chat logs is very fast.

2. Setup Chatistics

First, install the required Python packages using conda:

conda env create -f environment.yml
conda activate chatistics

You can now parse the messages by using the command python parse.py .

By default the parsers will try to infer your own name (i.e. your username) from the data. If this fails you can provide your own name to the parser by providing the --own-name argument. The name should match your name exactly as used on that chat platform.

# Google Hangouts
python parse.py hangouts

# Facebook Messenger
python parse.py messenger

# WhatsApp
python parse.py whatsapp

Telegram

  1. Create your Telegram application to access chat logs (instructions). You will need api_id and api_hash which we will now set as environment variables.
  2. Run cp secrets.sh.example secrets.sh and fill in the values for the environment variables TELEGRAM_API_ID, TELEGRAMP_API_HASH and TELEGRAM_PHONE (your phone number including country code).
  3. Run source secrets.sh
  4. Execute the parser script using python parse.py telegram

The pickle files will now be ready for analysis in the data folder!

For more options use the -h argument on the parsers (e.g. python parse.py telegram --help).

3. All done! Play with your data

Chatistics can print the chat logs as raw text. It can also create histograms, showing how many messages each interlocutor sent, or generate word clouds based on word density and a base image.

Export

You can view the data in stdout (default) or export it to csv, json, or as a Dataframe pickle.

python export.py

You can use the same filter options as described above in combination with an output format option:

  -f {stdout,json,csv,pkl}, --format {stdout,json,csv,pkl}
                        Output format (default: stdout)

Histograms

Plot all messages with:

python visualize.py breakdown

Among other options you can filter messages as needed (also see python visualize.py breakdown --help):

  --platforms {telegram,whatsapp,messenger,hangouts}
                        Use data only from certain platforms (default: ['telegram', 'whatsapp', 'messenger', 'hangouts'])
  --filter-conversation
                        Limit by conversations with this person/group (default: [])
  --filter-sender
                        Limit to messages sent by this person/group (default: [])
  --remove-conversation
                        Remove messages by these senders/groups (default: [])
  --remove-sender
                        Remove all messages by this sender (default: [])
  --contains-keyword
                        Filter by messages which contain certain keywords (default: [])
  --outgoing-only       
                        Limit by outgoing messages (default: False)
  --incoming-only       
                        Limit by incoming messages (default: False)

Eg to see all the messages sent between you and Jane Doe:

python visualize.py breakdown --filter-conversation "Jane Doe"

To see the messages sent to you by the top 10 people with whom you talk the most:

python visualize.py breakdown -n 10 --incoming-only

You can also plot the conversation densities using the --as-density flag.

Word Cloud

You will need a mask file to render the word cloud. The white bits of the image will be left empty, the rest will be filled with words using the color of the image. See the WordCloud library documentation for more information.

python visualize.py cloud -m raw_outlines/users.jpg

You can filter which messages to use using the same flags as with histograms.

Development

Install dev environment using

conda env create -f environment_dev.yml

Run tests from project root using

python -m pytest

Improvement ideas

  • Parsers for more chat platforms: Discord? Signal? Pidgin? ...
  • Handle group chats on more platforms.
  • See open issues for more ideas.

Pull requests are welcome!

Social medias

Projects using Chatistics

Meet your Artificial Self: Generate text that sounds like you workshop

Credits

Owner
Florian
🤖 Machine Learning
Florian
Data-sets from the survey and analysis

bachelor-thesis "Umfragewerte.xlsx" contains the orginal survey results. "umfrage_alle.csv" contains the survey results but one participant is cancele

1 Jan 26, 2022
Produces a summary CSV report of an Amber Electric customer's energy consumption and cost data.

Amber Electric Usage Summary This is a command line tool that produces a summary CSV report of an Amber Electric customer's energy consumption and cos

Graham Lea 12 May 26, 2022
ped-crash-techvol: Texas Ped Crash Tech Volume Pack

ped-crash-techvol: Texas Ped Crash Tech Volume Pack In conjunction with the Final Report "Identifying Risk Factors that Lead to Increase in Fatal Pede

Network Modeling Center; Center for Transportation Research; The University of Texas at Austin 2 Sep 28, 2022
PyPSA: Python for Power System Analysis

1 Python for Power System Analysis Contents 1 Python for Power System Analysis 1.1 About 1.2 Documentation 1.3 Functionality 1.4 Example scripts as Ju

758 Dec 30, 2022
NumPy aware dynamic Python compiler using LLVM

Numba A Just-In-Time Compiler for Numerical Functions in Python Numba is an open source, NumPy-aware optimizing compiler for Python sponsored by Anaco

Numba 8.2k Jan 07, 2023
TE-dependent analysis (tedana) is a Python library for denoising multi-echo functional magnetic resonance imaging (fMRI) data

tedana: TE Dependent ANAlysis TE-dependent analysis (tedana) is a Python library for denoising multi-echo functional magnetic resonance imaging (fMRI)

136 Dec 22, 2022
My solution to the book A Collection of Data Science Take-Home Challenges

DS-Take-Home Solution to the book "A Collection of Data Science Take-Home Challenges". Note: Please don't contact me for the dataset. This repository

Jifu Zhao 1.5k Jan 03, 2023
Python-based Space Physics Environment Data Analysis Software

pySPEDAS pySPEDAS is an implementation of the SPEDAS framework for Python. The Space Physics Environment Data Analysis Software (SPEDAS) framework is

SPEDAS 98 Dec 22, 2022
Python Implementation of Scalable In-Memory Updatable Bitmap Indexing

PyUpBit CS490 Large Scale Data Analytics — Implementation of Updatable Compressed Bitmap Indexing Paper Table of Contents About The Project Usage Cont

Hyeong Kyun (Daniel) Park 1 Jun 28, 2022
Data Analytics: Modeling and Studying data relating to climate change and adoption of electric vehicles

Correlation-Study-Climate-Change-EV-Adoption Data Analytics: Modeling and Studying data relating to climate change and adoption of electric vehicles I

Jonathan Feng 1 Jan 03, 2022
pandas: powerful Python data analysis toolkit

pandas is a Python package that provides fast, flexible, and expressive data structures designed to make working with "relational" or "labeled" data both easy and intuitive.

pandas 36.4k Jan 03, 2023
This repo is dedicated to the data extraction and manipulation of the World Bank's database called STEP.

Overview Welcome to the Step-X repository. This repo is dedicated to the data extraction and manipulation of the World Bank's database called STEP. Be

Keanu Pang 0 Jan 20, 2022
Minimal working example of data acquisition with nidaqmx python API

Data Aquisition using NI-DAQmx python API Based on this project It is a minimal working example for data acquisition using the NI-DAQmx python API. It

Pablo 1 Nov 05, 2021
Repositori untuk menyimpan material Long Course STMKGxHMGI tentang Geophysical Python for Seismic Data Analysis

Long Course "Geophysical Python for Seismic Data Analysis" Instruktur: Dr.rer.nat. Wiwit Suryanto, M.Si Dipersiapkan oleh: Anang Sahroni Waktu: Sesi 1

Anang Sahroni 0 Dec 04, 2021
A Numba-based two-point correlation function calculator using a grid decomposition

A Numba-based two-point correlation function (2PCF) calculator using a grid decomposition. Like Corrfunc, but written in Numba, with simplicity and hackability in mind.

Lehman Garrison 3 Aug 24, 2022
The official pytorch implementation of ViTAE: Vision Transformer Advanced by Exploring Intrinsic Inductive Bias

ViTAE: Vision Transformer Advanced by Exploring Intrinsic Inductive Bias Introduction | Updates | Usage | Results&Pretrained Models | Statement | Intr

104 Nov 27, 2022
Python package for analyzing sensor-collected human motion data

Python package for analyzing sensor-collected human motion data

Simon Ho 71 Nov 05, 2022
Python package for analyzing behavioral data for Brain Observatory: Visual Behavior

Allen Institute Visual Behavior Analysis package This repository contains code for analyzing behavioral data from the Allen Brain Observatory: Visual

Allen Institute 16 Nov 04, 2022
signac-flow - manage workflows with signac

signac-flow - manage workflows with signac The signac framework helps users manage and scale file-based workflows, facilitating data reuse, sharing, a

Glotzer Group 44 Oct 14, 2022
vartests is a Python library to perform some statistic tests to evaluate Value at Risk (VaR) Models

gg I wasn't satisfied with any of the other available Gemini clients, so I wrote my own. Requires Python 3.9 (maybe older, I haven't checked) and opti

RAFAEL RODRIGUES 5 Jan 03, 2023