Ejemplo Algoritmo Viterbi - Example of a Viterbi algorithm applied to a hidden Markov model on DNA sequence

Overview

Ejemplo Algoritmo Viterbi

Ejemplo de un algoritmo Viterbi aplicado a modelo oculto de Márkov sobre secuencia de ADN

Introducción.

En los diferentes campos existen fenómenos estocásticos cuyas variables de estudio presentan una evolución temporal, de tal forma, que el valor futuro de las variables de estudio depende únicamente de su valor presente, siendo independiente del histórico de la variable. Cuando el proceso de estudio presenta esta característica, se dice que cumple con la propiedad de Márkov y por tanto se pueden modelar en procesos de Márkov.

Un proceso de Márkov es una serie de experimentos en el que cada uno tiene m posibles resultados (E1, E2.....Em), y la probabilidad de cada resultado depende exclusivamente del que se haya obtenido en los experimentos previos, o lo que es lo mismo, el valor futuro depende de su valor presente. Adicionalmente, cuando los parámetros no se conocen, se dice que el problema está expresado en un modelo oculto de Márkov (HMM por sus siglas en ingles)

Mediante un simple ejemplo, se pretende resolver un problema de secuenciación de ADN expresado en un HMM usando un algoritmo de Viterbi programado en lenguaje Python.

Problema propuesto.

Considere un problema de bioinformática de 2 estados: Alto y Bajo. El estado alto caracteriza ADN codificado (Alto contenido de Guanina y Citosina) y el estado bajo caracteriza ADN no codificado (Bajo contenido de Guanina y citosina). El problema tiene las siguientes probabilidades:

  • Inicio.
    • Estado alto: 0.5
    • Estado bajo: 0.5
  • Transición:
    • Alto a bajo: 0.5
    • Alto a alto: 0.5
    • Bajo a alto: 0.4
    • Bajo a bajo: 0.6
  • Emisión estado alto:
    • Adenina: 0.2
    • Citosina: 0.3
    • Guanina: 0.3
    • Timina: 0.2
  • Emisión estado bajo:
    • Adenina: 0.3
    • Citosina: 0.2
    • Guanina: 0.2
    • Timina: 0.3

Conociendo las probabilidades de inicio, transición y emisión, es posible modelar en un HMM, tal como se muestra a continuación:

modelo HMM

El modelo puede ser usado para predecir la región de ADN codificado dada una secuencia:

  • GGCACTGAA

Metodología y algoritmo

Para resolver este problema de estado oculto de Márkov se aprovechará el algoritmo de Viterbi. El algoritmo de Viterbi es un algoritmo de programación dinámica que permite calcular la ruta de estados mas probable en un modelo de estado oculto HMM, es decir, obtiene la secuencia óptima que mejor explica la secuencia de observaciones. (Para mas información ver https://en.wikipedia.org/wiki/Viterbi_algorithm)

El algoritmo

El algoritmo fue desarrollado en Python sin uso de librerías o módulos extra. [DNA_viterbi.py] En la cabecera del código, se programaron 2 ejemplos de secuencia como tupla de caracteres, siendo la secuencia 1 la requerida en el problema (GGCACTGAA). Posteriormente se programan las probabilidades del problema. Estados como lista de caracteres, y probabilidades como diccionarios anidados. Finalmente, el código contiene dos funciones:

  • viterbi: Algoritmo de interés que procesa el HMM.
  • dptable: Función auxiliar para la impresión de resultados por consola.

Resultados

Al ejecutar el algoritmo anterior se obtienen los siguientes resultados:

G G C A C T G A A
Alto (H) 0.15000 0.02250 0.00337 0.00033 0.00006 0.00000 0.00000 0.00000 0.00000
Bajo (L) 0.10000 0.01500 0.00225 0.00050 0.00006 0.00001 0.00000 0.00000 0.00000

De estos resultados se obtiene que la ruta mas probable de estado es:

H -> H -> H -> L -> L -> L -> L -> L -> L

con una mayor probabilidad de 4.25e-08

Referencias

Owner
Mateo Velásquez Molina
Mateo Velásquez Molina
A minimal TPU compatible Jax implementation of NeRF: Representing Scenes as Neural Radiance Fields for View Synthesis

NeRF Minimal Jax implementation of NeRF: Representing Scenes as Neural Radiance Fields for View Synthesis. Result of Tiny-NeRF RGB Depth

Soumik Rakshit 11 Jul 24, 2022
Self-Supervised Monocular 3D Face Reconstruction by Occlusion-Aware Multi-view Geometry Consistency[ECCV 2020]

Self-Supervised Monocular 3D Face Reconstruction by Occlusion-Aware Multi-view Geometry Consistency(ECCV 2020) This is an official python implementati

304 Jan 03, 2023
A program that can analyze videos according to the weights you select

MaskMonitor A program that can analyze videos according to the weights you select 下載 訓練完的 weight檔案 執行 MaskDetection.py 內部可更改 輸入來源(鏡頭, 影片, 圖片) 以及輸出條件(人

Patrick_star 1 Nov 07, 2021
A dual benchmarking study of visual forgery and visual forensics techniques

A dual benchmarking study of facial forgery and facial forensics In recent years, visual forgery has reached a level of sophistication that humans can

8 Jul 06, 2022
Iterative Training: Finding Binary Weight Deep Neural Networks with Layer Binarization

Iterative Training: Finding Binary Weight Deep Neural Networks with Layer Binarization This repository contains the source code for the paper (link wi

Rakuten Group, Inc. 0 Nov 19, 2021
FOSS Digital Asset Distribution Platform built on Frappe.

Digistore FOSS Digital Assets Marketplace. Distribute digital assets, like a pro. Video Demo Here Features Create, attach and list digital assets (PDF

Mohammad Hussain Nagaria 30 Dec 08, 2022
Python Implementation of Chess Playing AI with variable difficulty

Chess AI with variable difficulty level implemented using the MiniMax AB-Pruning Algorithm

Ali Imran 7 Feb 20, 2022
AI-UPV at IberLEF-2021 EXIST task: Sexism Prediction in Spanish and English Tweets Using Monolingual and Multilingual BERT and Ensemble Models

AI-UPV at IberLEF-2021 EXIST task: Sexism Prediction in Spanish and English Tweets Using Monolingual and Multilingual BERT and Ensemble Models Descrip

Angel de Paula 1 Jun 08, 2022
An LSTM for time-series classification

Update 10-April-2017 And now it works with Python3 and Tensorflow 1.1.0 Update 02-Jan-2017 I updated this repo. Now it works with Tensorflow 0.12. In

Rob Romijnders 391 Dec 27, 2022
Pytorch and Keras Implementations of Hyperspectral Image Classification -- Traditional to Deep Models: A Survey for Future Prospects.

The repository contains the implementations for Hyperspectral Image Classification -- Traditional to Deep Models: A Survey for Future Prospects. Model

Ankur Deria 115 Jan 06, 2023
Discord-Protect is a simple discord bot allowing you to have some security on your discord server by ordering a captcha to the user who joins your server.

Discord-Protect Discord-Protect is a simple discord bot allowing you to have some security on your discord server by ordering a captcha to the user wh

Tir Omar 2 Oct 28, 2021
MapReader: A computer vision pipeline for the semantic exploration of maps at scale

MapReader A computer vision pipeline for the semantic exploration of maps at scale MapReader is an end-to-end computer vision (CV) pipeline designed b

Living with Machines 25 Dec 26, 2022
JAXDL: JAX (Flax) Deep Learning Library

JAXDL: JAX (Flax) Deep Learning Library Simple and clean JAX/Flax deep learning algorithm implementations: Soft-Actor-Critic (arXiv:1812.05905) Transf

Patrick Hart 4 Nov 27, 2022
A pytorch implementation of Reading Wikipedia to Answer Open-Domain Questions.

DrQA A pytorch implementation of the ACL 2017 paper Reading Wikipedia to Answer Open-Domain Questions (DrQA). Reading comprehension is a task to produ

Runqi Yang 394 Nov 08, 2022
An official source code for paper Deep Graph Clustering via Dual Correlation Reduction, accepted by AAAI 2022

Dual Correlation Reduction Network An official source code for paper Deep Graph Clustering via Dual Correlation Reduction, accepted by AAAI 2022. Any

yueliu1999 109 Dec 23, 2022
VOLO: Vision Outlooker for Visual Recognition

VOLO: Vision Outlooker for Visual Recognition, arxiv This is a PyTorch implementation of our paper. We present Vision Outlooker (VOLO). We show that o

Sea AI Lab 876 Dec 09, 2022
In generative deep geometry learning, we often get many obj files remain to be rendered

a python prompt cli script for blender batch render In deep generative geometry learning, we always get many .obj files to be rendered. Our rendered i

Tian-yi Liang 1 Mar 20, 2022
Open-source Monocular Python HawkEye for Tennis

Tennis Tracking 🎾 Objectives Track the ball Detect court lines Detect the players To track the ball we used TrackNet - deep learning network for trac

ArtLabs 188 Jan 08, 2023
Research code for the paper "How Good is Your Tokenizer? On the Monolingual Performance of Multilingual Language Models"

Introduction This repository contains research code for the ACL 2021 paper "How Good is Your Tokenizer? On the Monolingual Performance of Multilingual

AdapterHub 20 Aug 04, 2022
TransMVSNet: Global Context-aware Multi-view Stereo Network with Transformers.

TransMVSNet This repository contains the official implementation of the paper: "TransMVSNet: Global Context-aware Multi-view Stereo Network with Trans

旷视研究院 3D 组 155 Dec 29, 2022