Captcha Recognition

Overview

Captcha Recognition

Problem Definition

CAPTCHA (Completely Automated Public Turing Test to tell Computers and Humans Apart) is an automated test created to prevent websites from being repeatedly accessed by an automatic program in a short period of time and wasting network resources. Among all the CAPTCHAs, commonly used types contain low resolution, deformed characters with character adhesions and background noise, which the user must read and type correctly into an input box. This is a relatively simple task for humans, taking an average of 10 seconds to solve, but it presents a difficulty for computers, because such noise makes it difficult for a program to differentiate the characters from them. The main objective of this project is to recognize the target numbers in the captcha images correctly.

The mainstream CAPTCHA is based on visual representation, including images such as letters and text. Traditional CAPTCHA recognition includes three steps: image pre-processing, character segmentation, and character recognition. Traditional methods have generalization capabilities and robustness for different types of CAPTCHA. The stickiness is poor. As a kind of deep neural network, convolutional neural network has shown excellent performance in the field of image recognition, and it is much better than traditional machine learning methods. Compared with traditional methods, the main advantage of CNN lies in the convolutional layer in which the extracted image features have strong expressive ability, avoiding the problems of data pre-processing and artificial design features in traditional recognition technology. Although CNN has achieved certain results, the recognition effect of complex CAPTCHA is insufficient

Dataset

The dataset contains CAPTCHA images. The images are 5 letter words, and have noise applied (blur and a line). They are of size 200 x 50. The file name is same as the image letters.
Link for the dataset: https://www.kaggle.com/fournierp/captcha-version-2-images

image

Image Pre-Processing

Three transformations have been applied to the data:

  1. Adaptive Thresholding
  2. Morphological transformations
  3. Gaussian blurring

Adaptive Thresholding

Thresholding is the process of converting a grayscale image to a binary image (an image that contains only black and white pixels). This process is explained in the steps below: • A threshold value is determined according to the requirements (Say 128). • The pixels of the grayscale image with values greater than the threshold (>128) are replaced with pixels of maximum pixel value(255). • The pixels of the grayscale image with values lesser than the threshold (<128) are replaced with pixels of minimum pixel value(0). But this method doesn’t perform well on all images, especially when the image has different lighting conditions in different areas. In such cases, we go for adaptive thresholding. In adaptive thresholding the threshold value for each pixel is determined individually based on a small region around it. Thus we get different thresholds for different regions of the image and so this method performs well on images with varying illumination.

The steps involved in calculating the pixel value for each of the pixels in the thresholded image are as follows: • The threshold value T(x,y) is calculated by taking the mean of the blockSize×blockSize neighborhood of (x,y) and subtracting it by C (Constant subtracted from the mean or weighted mean). • Then depending on the threshold type passed, either one of the following operations in the below image is performed:

image

OpenCV provides us the adaptive threshold function to perform adaptive thresholding : Thres_img=cv.adaptiveThreshold ( src, maxValue, adaptiveMethod, thresholdType, blockSize, C) Image after applying adaptive thresholding :

image

Morphological Transformations

Morphological transformations are some simple operations based on the image shape. It is normally performed on binary images. Two basic morphological operators are Erosion and Dilation. Then its variant forms like Opening, Closing, Gradient etc also comes into play. For this project I have used its variant form closing, closing is a dilation followed by an erosion. As the name suggests, a closing is used to close holes inside of objects or for connecting components together. An erosion in an image “erodes” the foreground object and makes it smaller. A foreground pixel in the input image will be kept only if all pixels inside the structuring element are > 0. Otherwise, the pixels are set to 0 (i.e., background). Erosion is useful for removing small blobs in an image or disconnecting two connected objects. The opposite of an erosion is a dilation. Just like an erosion will eat away at the foreground pixels, a dilation will grow the foreground pixels. Dilations increase the size of foreground objects and are especially useful for joining broken parts of an image together. Performing the closing operation is again accomplished by making a call to cv2.morphologyEx, but this time we are going to indicate that our morphological operation is a closing by specifying the cv2.MORPH_CLOSE. Image after applying morphological transformation:

image

Gaussian Blurring

Gaussian smoothing is used to remove noise that approximately follows a Gaussian distribution. The end result is that our image is less blurred, but more “naturally blurred,” than using the average in average blurring. Furthermore, based on this weighting we’ll be able to preserve more of the edges in our image as compared to average smoothing. Gaussian blurring is similar to average blurring, but instead of using a simple mean, we are now using a weighted mean, where neighbourhood pixels that are closer to the central pixel contribute more “weight” to the average. Gaussian smoothing uses a kernel of M X N, where both M and N are odd integers. Image after applying Gaussian blurring:

image

After applying all these image pre-processing techniques, images have been converted into n-dimension array

image

Further 2 more transformations have been applied on this n-dimensional array. The pixel values initially range from 0-255. They are first brought to 0-1 range by dividing all pixel values by 255. Then, they are normalized. Then, the data is shuffled and splitted into training and validation sets. Since the number of samples is not big enough and in deep learning we need large amounts of data and in some cases it is not feasible to collect thousands or millions of images, so data augmentation comes to the rescue. Data Augmentation is a technique that can be used to artificially expand the size of a training set by creating modified data from the existing one. It is a good practice to use data augmentation if you want to prevent overfitting, or the initial dataset is too small to train on, or even if you want to squeeze better performance from your model. In general, data augmentation is frequently used when building a deep learning model. To augment images when using Keras as our deep learning framework we can use ImageDataGenerator (tf.keras.preprocessing.image.ImageDataGenerator) that generates batches of tensor images with real-time data augmentation.

image

image

Testing

A helper function has been made to test the model on test data in which image pre-processing and transformations have been applied to get the final output

image

Result

The model achieves:

  1. Accuracy = 89.13%
  2. Precision = 91%
  3. Recall = 90%
  4. F1-score= 90%

Below is the full report:

image

Owner
Mohit Kaushik
Mohit Kaushik
Code for AAAI 2021 paper: Sequential End-to-end Network for Efficient Person Search

This repository hosts the source code of our paper: [AAAI 2021]Sequential End-to-end Network for Efficient Person Search. SeqNet achieves the state-of

Zj Li 218 Dec 31, 2022
Face Detection with DLIB

Face Detection with DLIB In this project, we have detected our face with dlib and opencv libraries. Setup This Project Install DLIB & OpenCV You can i

Can 2 Jan 16, 2022
Image processing is one of the most common term in computer vision

Image processing is one of the most common term in computer vision. Computer vision is the process by which computers can understand images and videos, and how they are stored, manipulated, and retri

Happy N. Monday 3 Feb 15, 2022
document image degradation

ocrodeg The ocrodeg package is a small Python library implementing document image degradation for data augmentation for handwriting recognition and OC

NVIDIA Research Projects 134 Nov 18, 2022
An expandable and scalable OCR pipeline

Overview Nidaba is the central controller for the entire OGL OCR pipeline. It oversees and automates the process of converting raw images into citable

81 Jan 04, 2023
Python bindings for JIGSAW: a Delaunay-based unstructured mesh generator.

JIGSAW: An unstructured mesh generator JIGSAW is an unstructured mesh generator and tessellation library; designed to generate high-quality triangulat

Darren Engwirda 26 Dec 13, 2022
Resizing Canny Countour In Python

Resizing_Canny_Countour Install Visual Studio Code , https://code.visualstudio.com/download Select Python and install with terminal( pip install openc

Walter Ng 1 Nov 07, 2021
aardio的opencv库

opencv_aardio dll库下载地址:https://github.com/xuncv/opencv-plugin/releases import cv2 img = cv2.imread("./images/Lena.jpg",1) img = cv2.medianBlur(img,5)

71 Dec 31, 2022
Generating .npy dataset and labels out of given image, containing numbers from 0 to 9, using opencv

basic-dataset-generator-from-image-of-numbers generating .npy dataset and labels out of given image, containing numbers from 0 to 9, using opencv inpu

1 Jan 01, 2022
python ocr using tesseract/ with EAST opencv detector

pytextractor python ocr using tesseract/ with EAST opencv text detector Uses the EAST opencv detector defined here with pytesseract to extract text(de

Danny Crasto 38 Dec 05, 2022
This repository provides train&test code, dataset, det.&rec. annotation, evaluation script, annotation tool, and ranking.

SCUT-CTW1500 Datasets We have updated annotations for both train and test set. Train: 1000 images [images][annos] Additional point annotation for each

Yuliang Liu 600 Dec 18, 2022
Let's explore how we can extract text from forms

Form Segmentation Let's explore how we can extract text from any forms / scanned pages. Objectives The goal is to find an algorithm that can extract t

Philip Doxakis 42 Jun 05, 2022
Assignment work with webcam

work with webcam : Press key 1 to use emojy on your face Press key 2 to use lip and eye on your face Press key 3 to checkered your face Press key 4 to

Hanane Kheirandish 2 May 31, 2022
A program that takes in the hand gesture displayed by the user and translates ASL.

Interactive-ASL-Recognition Using the framework mediapipe made by google, OpenCV library and through self teaching, I was able to create a program tha

Riddhi Bajaj 3 Nov 22, 2021
Character Segmentation using TensorFlow

Character Segmentation Segment characters and spaces in one text line,from this paper Chinese English mixed Character Segmentation as Semantic Segment

26 Aug 25, 2022
A curated list of promising OCR resources

Call for contributor(paper summary,dataset generation,algorithm implementation and any other useful resources) awesome-ocr A curated list of promising

wanghaisheng 1.6k Jan 04, 2023
This Repository contain Opencv Projects in python

Python-Opencv OpenCV OpenCV (Open Source Computer Vision Library) is an open source computer vision and machine learning software library. OpenCV was

Yash Sakre 2 Nov 06, 2021
Script para controlar o movimento do mouse usando Python e openCV com câmera em tempo real que detecta pontos de referência da mão, rastreia padrões de gestos em vez de um mouse físico.

mouserController Script para controlar o movimento do mouse usando Python e openCV com câmera em tempo real que detecta pontos de referência da mão, r

Vinícius Azevedo 6 Jun 28, 2022
A simple OCR API server, seriously easy to be deployed by Docker, on Heroku as well

ocrserver Simple OCR server, as a small working sample for gosseract. Try now here https://ocr-example.herokuapp.com/, and deploy your own now. Deploy

Hiromu OCHIAI 541 Dec 28, 2022
EQFace: An implementation of EQFace: A Simple Explicit Quality Network for Face Recognition

EQFace: A Simple Explicit Quality Network for Face Recognition The first face recognition network that generates explicit face quality online.

DeepCam Shenzhen 141 Dec 31, 2022