Source codes of CenterTrack++ in 2021 ICME Workshop on Big Surveillance Data Processing and Analysis

Overview

MOT Tracked object bounding box association (CenterTrack++)

New association method based on CenterTrack. Two new branches (Tracked Size and IOU) are added onto the original CenterTrack tracker. The proposed method enables the computation of IOU distance matrix for more accurate object association compared to single displacement offset in the original CenterTrack.

Modification to CenterTrack method, image modified from CenterTrack

Abstract

The recent development of multi-object tracking (MOT) on point-based joint detection and tracking methods has attracted much research attention. CenterTrack tracking algorithm is one of such promising methods. It achieves state-of-the-art tracking performance using a simple detection model and single-frame spatial offsets to localize objects and predict their associations in a single network. However, this method still suffers from high identity switches due to the inferior association method. Only point displacement distance matrix is used to associate objects, which is not robust to deal with occlusion scenarios. To reduce the high number of identity switches and improve the tracking accuracy, more effective spatial information should be used in association. In this paper, we propose to incorporate a simple tracked object bounding box and overlapping prediction based on the current frame onto the CenterTrack algorithm. Specifically, we propose a Intersection over Union (IOU) distance cost matrix in the association step instead of point displacement distance. We evaluate our proposed tracker on the MOT17 test dataset, showing that our proposed method can reduce identity switches significantly by 22.6% and obtain a notable improvement of 1.5% in IDF1 compared to the original CenterTrack’s under the same tracklet lifetime.

Main Contributions

  • Proposed two branches (tracked box size and IOU)on top of the existing CenterTrack method for IOU distance metric computation in object association
  • Evaluation the proposed method on MOT17 dataset and obtain significant reduction in IDs and notable improvements in tracking accuracy score

Two new branches

The idea of the proposed method is to enhance the original displacement only association. Inspired by the IOU distance in SORT and IOU-Tracker, IOU distance can be used for more accurate object association across frames. IOU distance is calculated as 1 - IOU(bounding box of detected object in the previous frame and the predicted tracked object bounding box in the previous frame based on the current frame)

Tracked Object Size prediction

In order to obtain the IOU distance, the bounding box of the tracked object in the previous frame should be learnt. In this project, two methods were used to learn the tracked bounding box.

Tracking_wh: Directly learn the width and height of the tracked object bounding box in the previous frame.

Tracking_ltrb: Learn the offsets of the left, top, right and bottom of bounding box from the tracked object center in the previous frame.

The tracking_wh(left) and tracking_ltrb(right) approach illustration.

IOU prediction

To further suppress inaccurate association, the IOU value of the tracked object bounding box in adjacent frames is learnt to provide a threshold to filter unlikely associations. We would set the IOU distance to infinity if IOU distance > IOU.

Association Method

Main results

Comparison with other SOTA tracker on MOT17 test set

Note: S= Spatial features, A=appearance features

Tracker Association Features MOTA IDF1 IDs
TubeTK S 63 58.6 4137
CenterTrack S 67.8 64.7 3039
Ours S 68.1 66.2 2352
SST A 52.4 49.5 8431
CTrackerV1 S+A 66.6 57.4 5529
DEFT S+A 66.6 65.4 2823
FairMOT S+A 73.7 72.3 3303

Ablative studies on tracked size prediction method

Tracking_wh

Association Method IDF1 MOTA IDs FP(%) FN(%)
DIS 69.2 66.2 219 3.9 29.5
IOU 71.1 66.7 204 3.6 29.3
Combined 70.9 66.2 233 3.9 29.6
DIS→IOU 70 66.2 218 3.9 29.5
IOU→DIS 69.8 66.8 185 3.6 29.2

Tracking_ltrb

Association Method IDF1 MOTA IDs FP(%) FN(%)
DIS 69.2 66.2 219 3.9 29.5
IOU 72.4 66.7 191 3.8 29.2
Combined 70.8 66.5 236 3.8 29.3
DIS→IOU 70.5 66.6 202 3.8 29.2
IOU→DIS 71.4 66.7 166 3.8 29.2

Installation

Please refer to INSTALL.md for installation instructions.

Training and Evaluation

  • Download the crowdhuman pretrained model from xinyizhou/CenterTrack MODEL ZOO.md to models
  • prepare the data and convert it into COCO format refer to the original CenterTrack repo.
  • change the dataset root directory data_dir in opt.py
  • ablative studies for tracking_wh and tracking_ltrb approach respectively with five association method (IOU,DIS,Combined, IOU→DIS, DIS→IOU)
sh experiments/mot17val_tracking_wh.sh

sh experiments/mot17val_tracking_ltrb.sh

The trained model on MOT17val dataset using two approach are available in google drive, tracking_ltrb_70val.pth, tracking_wh_70val.pth.

  • Train on full mot17 training set and run model on the test set for evaluation
sh experiments/mot17full.sh

The trained models on full MOT17 dataset using ltrb approach is available in the google drive.

Demo comparison

Occlusion case

Original CenterTrack (left) vs CenterTrack++ (right)

Object exiting the frame

Original CenterTrack (left) vs CenterTrack++ (right)

Acknowledgement

A large part of the code is adapted from xingyizhou/CenterTrack, thanks for their wonderful inspiration.

Citation

If you find this paper and code useful in your research, please cite our papers.

@misc{yang2021multiobject,
      title={Multi-object Tracking with Tracked Object Bounding Box Association}, 
      author={Nanyang Yang and Yi Wang and Lap-Pui Chau},
      year={2021},
      eprint={2105.07901},
      archivePrefix={arXiv},
      primaryClass={cs.CV}
}
Owner
Nanyang Technological University Information Engineering and Media Student
Fuwa-http - The http client implementation for the fuwa eco-system

Fuwa HTTP The HTTP client implementation for the fuwa eco-system Example import

Fuwa 2 Feb 16, 2022
A Deep Learning Framework for Neural Derivative Hedging

NNHedge NNHedge is a PyTorch based framework for Neural Derivative Hedging. The following repository was implemented to ease the experiments of our pa

GUIJIN SON 17 Nov 14, 2022
For IBM Quantum Challenge Africa 2021, 9 September (07:00 UTC) - 20 September (23:00 UTC).

IBM Quantum Challenge Africa 2021 To ensure Africa is able to apply quantum computing to solve problems relevant to the continent, the IBM Research La

Qiskit Community 48 Dec 25, 2022
Unofficial implementation of the Involution operation from CVPR 2021

involution_pytorch Unofficial PyTorch implementation of "Involution: Inverting the Inherence of Convolution for Visual Recognition" by Li et al. prese

Rishabh Anand 46 Dec 07, 2022
This program presents convolutional kernel density estimation, a method used to detect intercritical epilpetic spikes (IEDs)

Description This program presents convolutional kernel density estimation, a method used to detect intercritical epilpetic spikes (IEDs) in [Gardy et

Ludovic Gardy 0 Feb 09, 2022
codes for IKM (arXiv2021, Submitted to IEEE Trans)

Image-specific Convolutional Kernel Modulation for Single Image Super-resolution This repository is for IKM introduced in the following paper Yuanfei

Yuanfei Huang 9 Dec 29, 2022
Short and long time series classification using convolutional neural networks

time-series-classification Short and long time series classification via convolutional neural networks In this project, we present a novel framework f

35 Oct 22, 2022
An algorithm that handles large-scale aerial photo co-registration, based on SURF, RANSAC and PyTorch autograd.

An algorithm that handles large-scale aerial photo co-registration, based on SURF, RANSAC and PyTorch autograd.

Luna Yue Huang 41 Oct 29, 2022
Manim is an engine for precise programmatic animations, designed for creating explanatory math videos

Manim is an engine for precise programmatic animations, designed for creating explanatory math videos. Note, there are two versions of manim. This rep

Grant Sanderson 49k Jan 09, 2023
Differentiable Abundance Matching With Python

shamnet Differentiable Stellar Population Synthesis Installation You can install shamnet with pip. Installation dependencies are numpy, jax, corrfunc,

5 Dec 17, 2021
Physics-informed Neural Operator for Learning Partial Differential Equation

PINO Physics-informed Neural Operator for Learning Partial Differential Equation Abstract: Machine learning methods have recently shown promise in sol

107 Jan 02, 2023
Fast Differentiable Matrix Sqrt Root

Fast Differentiable Matrix Sqrt Root Geometric Interpretation of Matrix Square Root and Inverse Square Root This repository constains the official Pyt

YueSong 42 Dec 30, 2022
Multi Task Vision and Language

12-in-1: Multi-Task Vision and Language Representation Learning Please cite the following if you use this code. Code and pre-trained models for 12-in-

Facebook Research 712 Dec 19, 2022
Official PyTorch implementation of "Edge Rewiring Goes Neural: Boosting Network Resilience via Policy Gradient".

Edge Rewiring Goes Neural: Boosting Network Resilience via Policy Gradient This repository is the official PyTorch implementation of "Edge Rewiring Go

Shanchao Yang 4 Dec 12, 2022
PassAPI is a password generator in hash format and fully developed in Python, with the aim of teaching how to handle and build

simple, elegant and safe Introduction PassAPI is a password generator in hash format and fully developed in Python, with the aim of teaching how to ha

Johnsz 2 Mar 02, 2022
Official NumPy Implementation of Deep Networks from the Principle of Rate Reduction (2021)

Deep Networks from the Principle of Rate Reduction This repository is the official NumPy implementation of the paper Deep Networks from the Principle

Ryan Chan 49 Dec 16, 2022
E2EC: An End-to-End Contour-based Method for High-Quality High-Speed Instance Segmentation

E2EC: An End-to-End Contour-based Method for High-Quality High-Speed Instance Segmentation E2EC: An End-to-End Contour-based Method for High-Quality H

zhangtao 146 Dec 29, 2022
Check out the StyleGAN repo and place it in the same directory hierarchy as the present repo

Variational Model Inversion Attacks Kuan-Chieh Wang, Yan Fu, Ke Li, Ashish Khisti, Richard Zemel, Alireza Makhzani Most commands are in run_scripts. W

Jackson Wang 15 Dec 26, 2022
Do Smart Glasses Dream of Sentimental Visions? Deep Emotionship Analysis for Eyewear Devices

EMOShip This repository contains the EMO-Film dataset described in the paper "Do Smart Glasses Dream of Sentimental Visions? Deep Emotionship Analysis

1 Nov 18, 2022
Apache Flink

Apache Flink Apache Flink is an open source stream processing framework with powerful stream- and batch-processing capabilities. Learn more about Flin

The Apache Software Foundation 20.4k Dec 30, 2022