PIXIE: Collaborative Regression of Expressive Bodies

Related tags

Deep LearningPIXIE
Overview

PIXIE: Collaborative Regression of Expressive Bodies

[Project Page]

This is the official Pytorch implementation of PIXIE.

PIXIE reconstructs an expressive body with detailed face shape and hand articulation from a single image. PIXIE does this by regressing the body, face and hands directly from image pixels using a neural network that includes a novel moderator, which attends to add weights information about the different body parts. Unlike prior work, PIXIE estimates bodies with a gender-appropriate shape but does so in a gender neutral shape space to accommodate non-binary shapes. Please refer to the Paper for more details.

The main features of PIXIE are:

  • Expressive body estimation: Given a single image, PIXIE reconstructs the 3D body shape and pose, hand articulation and facial expression as SMPL-X parameters
  • Facial details: PIXIE extracts detailed face shape, including wrinkles, using DECA
  • Facial texture: PIXIE also returns a estimate of the albedo of the subject
  • Animation: The estimated body can be re-posed and animated
  • Robust: Tested on full-body images in unconstrained conditions. The moderation strategy prevents unnatural poses. Overall, our method is robust to: various poses, illumination conditions and occlusions
  • Accurate: state-of-the-art expressive body reconstruction
  • Fast: this is a direct regression method (pixels in, SMPL-X out)

Getting started

Please follow the installation instructions to install all necessary packages and download the data.

Demo

Expressive 3D body reconstruction

python demos/demo_fit_body.py --saveObj True 

This return the estimated 3D body geometry with texture, in the form of an obj file, and render it from multiple viewpoints. If you set the optional --deca_path argument then the result will also contain facial details from DECA, provided that the face moderator is confident enough. Please run python demos/demo_fit_body.py --help for a more detailed description of the various available options.

input body image, estimated 3D body, with facial details, with texture, different views

3D face reconstruction

python demos/demo_fit_face.py --saveObj True --showBody True

Note that, given only a face image, our method still regresses the full SMPL-X parameters, producing a body mesh (as shown in the rightmost image). Futher, note how different face shapes produce different body shapes. The face tells us a lot about the body.

input face image, estimated face, with facial details, with texture, whole body in T-pose

3D hand reconstruction

python demos/demo_fit_hand.py --saveObj True

We do not provide support for hand detection, please make sure that to pass hand-only images and flip horizontally all left hands.

input hand image, estimated hand, with texture(fixed texture).

Animation

python demos/demo_animate_body.py 

Bodies estimated by PIXIE are easily animated. For example, we can estimate the body from one image and animate with the poses regressed from a different image sequence.

The visualization contains the input image, the predicted expressive 3D body, the animation result, the reference video and its corresponding reconstruction. For the latter, the color of the hands and head represents the confidence of the corresponding moderators. A lighter color means that PIXIE trusts more the information of the body image rather than the parts, which can happen when a person is facing away from the camera for example.

Notes

You can find more details on our method, as well as a discussion of the limitations of PIXIE here.

Citation

If you find our work useful to your research, please consider citing:

@inproceedings{PIXIE:2021,
      title={Collaborative Regression of Expressive Bodies using Moderation}, 
      author={Yao Feng and Vasileios Choutas and Timo Bolkart and Dimitrios Tzionas and Michael J. Black},
      booktitle={International Conference on 3D Vision (3DV)},
      year={2021}
}

License

This code and model are available for non-commercial scientific research purposes as defined in the LICENSE file. By downloading and using the code and model you agree to the terms in the LICENSE.

Acknowledgments

For functions or scripts that are based on external sources, we acknowledge the origin individually in each file.
Here are some great resources we benefit from:

We would also like to thank the authors of other public body regression methods, which allow us to easily perform quantitative and qualitative comparisons:
HMR, SPIN, frankmocap

Last but not least, we thank Victoria Fernández Abrevaya, Yinghao Huang and Radek Danecek for their helpful comments and proof reading, and Yuliang Xiu for his help in capturing demo sequences. This research was partially supported by the Max Planck ETH Center for Learning Systems. Some of the images used in the qualitative examples come from pexels.com.

Contact

For questions, please contact [email protected].
For commercial licensing (and all related questions for business applications), please contact [email protected].

Owner
Yao Feng
Yao Feng
BDDM: Bilateral Denoising Diffusion Models for Fast and High-Quality Speech Synthesis

Bilateral Denoising Diffusion Models (BDDMs) This is the official PyTorch implementation of the following paper: BDDM: BILATERAL DENOISING DIFFUSION M

172 Dec 23, 2022
Attack on Confidence Estimation algorithm from the paper "Disrupting Deep Uncertainty Estimation Without Harming Accuracy"

Attack on Confidence Estimation (ACE) This repository is the official implementation of "Disrupting Deep Uncertainty Estimation Without Harming Accura

3 Mar 30, 2022
WPPNets: Unsupervised CNN Training with Wasserstein Patch Priors for Image Superresolution

WPPNets: Unsupervised CNN Training with Wasserstein Patch Priors for Image Superresolution This code belongs to the paper [1] available at https://arx

Fabian Altekrueger 5 Jun 02, 2022
This repo is a C++ version of yolov5_deepsort_tensorrt. Packing all C++ programs into .so files, using Python script to call C++ programs further.

yolov5_deepsort_tensorrt_cpp Introduction This repo is a C++ version of yolov5_deepsort_tensorrt. And packing all C++ programs into .so files, using P

41 Dec 27, 2022
Deep learning models for classification of 15 common weeds in the southern U.S. cotton production systems.

CottonWeeds Deep learning models for classification of 15 common weeds in the southern U.S. cotton production systems. requirements pytorch torchsumma

Dong Chen 8 Jun 07, 2022
Reference implementation for Structured Prediction with Deep Value Networks

Deep Value Network (DVN) This code is a python reference implementation of DVNs introduced in Deep Value Networks Learn to Evaluate and Iteratively Re

Michael Gygli 55 Feb 02, 2022
Pre-trained models for a Cascaded-FCN in caffe and tensorflow that segments

Cascaded-FCN This repository contains the pre-trained models for a Cascaded-FCN in caffe and tensorflow that segments the liver and its lesions out of

300 Nov 22, 2022
Official implementation of VaxNeRF (Voxel-Accelearated NeRF).

VaxNeRF Paper | Google Colab This is the official implementation of VaxNeRF (Voxel-Accelearated NeRF). VaxNeRF provides very fast training and slightl

naruya 132 Nov 21, 2022
A Probabilistic End-To-End Task-Oriented Dialog Model with Latent Belief States towards Semi-Supervised Learning

LABES This is the code for EMNLP 2020 paper "A Probabilistic End-To-End Task-Oriented Dialog Model with Latent Belief States towards Semi-Supervised L

17 Sep 28, 2022
Puzzle-CAM: Improved localization via matching partial and full features.

Puzzle-CAM The official implementation of "Puzzle-CAM: Improved localization via matching partial and full features".

Sanghyun Jo 150 Nov 14, 2022
The code repository for EMNLP 2021 paper "Vision Guided Generative Pre-trained Language Models for Multimodal Abstractive Summarization".

Vision Guided Generative Pre-trained Language Models for Multimodal Abstractive Summarization [Paper] accepted at the EMNLP 2021: Vision Guided Genera

CAiRE 42 Jan 07, 2023
Code for CVPR2019 Towards Natural and Accurate Future Motion Prediction of Humans and Animals

Motion prediction with Hierarchical Motion Recurrent Network Introduction This work concerns motion prediction of articulate objects such as human, fi

Shuang Wu 85 Dec 11, 2022
OpenMMLab's Next Generation Video Understanding Toolbox and Benchmark

Introduction English | 简体中文 MMAction2 is an open-source toolbox for video understanding based on PyTorch. It is a part of the OpenMMLab project. The m

OpenMMLab 2.7k Jan 07, 2023
This project is a loose implementation of paper "Algorithmic Financial Trading with Deep Convolutional Neural Networks: Time Series to Image Conversion Approach"

Stock Market Buy/Sell/Hold prediction Using convolutional Neural Network This repo is an attempt to implement the research paper titled "Algorithmic F

Asutosh Nayak 136 Dec 28, 2022
Github for the conference paper GLOD-Gaussian Likelihood OOD detector

FOOD - Fast OOD Detector Pytorch implamentation of the confernce peper FOOD arxiv link. Abstract Deep neural networks (DNNs) perform well at classifyi

17 Jun 19, 2022
Code for the paper "Ordered Neurons: Integrating Tree Structures into Recurrent Neural Networks"

ON-LSTM This repository contains the code used for word-level language model and unsupervised parsing experiments in Ordered Neurons: Integrating Tree

Yikang Shen 572 Nov 21, 2022
RipsNet: a general architecture for fast and robust estimation of the persistent homology of point clouds

RipsNet: a general architecture for fast and robust estimation of the persistent homology of point clouds This repository contains the code asscoiated

Felix Hensel 14 Dec 12, 2022
Some simple programs built in Python: webcam with cv2 that detects eyes and face, with grayscale filter

Programas en Python Algunos programas simples creados en Python: 📹 Webcam con c

Madirex 1 Feb 15, 2022
Source code for the paper "Periodic Traveling Waves in an Integro-Difference Equation With Non-Monotonic Growth and Strong Allee Effect"

Source code for the paper "Periodic Traveling Waves in an Integro-Difference Equation With Non-Monotonic Growth and Strong Allee Effect" by Michael Ne

M Nestor 1 Apr 19, 2022
Python package for covariance matrices manipulation and Biosignal classification with application in Brain Computer interface

pyRiemann pyRiemann is a python package for covariance matrices manipulation and classification through Riemannian geometry. The primary target is cla

447 Jan 05, 2023