AntiFuzz: Impeding Fuzzing Audits of Binary Executables

Related tags

Deep Learningantifuzz
Overview

AntiFuzz: Impeding Fuzzing Audits of Binary Executables

Get the paper here: https://www.usenix.org/system/files/sec19-guler.pdf

Usage:

The python script antifuzz_generate.py generates a "antifuzz.h" file that you need to include in your C project (see chapter below). The script takes multiple arguments to define which features you want to activate.

To disable all features, supply:

  --disable-all

To break assumption (A), i.e. to break coverage-guided fuzzing, use:

  --enable-anti-coverage

You can specify how many random BBs and random constrain functions you want to have by supplying "--anti-coverage [num]" (default: 10000).

To break assumption (B), i.e. to prevent fuzzers from detecting crashes, use:

  --signal --crash-action exit

To break assumption (C), i.e. to decrease the performance of the application when being fuzzed, use:

  --enable-sleep --signal

Additionaly, you can supply "--sleep [ms]" to set the length of the sleep in milliseconds (default: 750). You can also replace the crash behavior by supplying "--crash-action timeout" to replace every crash with a timeout.

To break assumption (D), i.e. to boggle down symbolic execution engines, use:

  --hash-cmp --enable-encrypt-decrypt

To enable all features, use:

  --enable-anti-coverage --signal --crash-action exit --enable-sleep --signal --hash-cmp --enable-encrypt-decrypt

Demo

To test it out, we supplied a demo application called antifuzz_test.c that just checks for "crsh" with single byte comparisons, and crashes if that's the case. It configures itself to fit the generated antifuzz header file, i.e. when hash comparisons are demanded via antifuzz_generate.py, antifuzz_test will compare the hashes instead of the plain constants.

First, generate the antifuzz.h file:

python antifuzz_generate.py --enable-anti-coverage --signal --crash-action exit --enable-sleep --signal --hash-cmp --enable-encrypt-decrypt

Next, compile the demo application with afl-gcc after installing AFL 2.52b (note that this may take minutes (!) depending on the number of random BBs added):

afl-gcc antifuzz_test.c -o antifuzz_test 

Run it in AFL to test it out:

mkdir inp; echo 1234 > inp/a.txt; afl-fuzz -i inp/ -o /dev/shm/out -- ./antifuzz_test @@

If you enabled all options, AFL may take a long time to start because the application is slowed down (to break assumption (C))

Protecting Applications

To include it in your own C project, follow these instructions (depending on your use-case and application, you might want to skip some of them):

1.

Add

#include "antifuzz.h"

to the header.

2.

Jump to the line that opens the (main) input file, the one that an attacker might target as an attack vector, and call

antifuzz_init("file_name_here", FLAG_ALL); 

This initializes AntiFuzz, checks if overwriting signals is possible, checks if the application is ptrace'd, puts the input through encryption and decryption, jumps through random BBs, etc.

3.

Find all lines and blocks of code that deal with malformed input files or introduce those yourself. It's often the case that these lines already exist to print some kind of error or warning message (e.g. "this is not a valid ... file"). Add a call to

antifuzz_onerror()

everywhere you deem appropriate.

4.

Find comparisons to constants (e.g. magic bytes) that you think are important for this file format, and change the comparison to hash comparisons. Add your constant to antifuzz_constants.tpl.h like this:

char *antifuzzELF = "ELF";

Our generator script will automatically change these lines to their respective SHA512 hashes when generating the final header file, you do not have to do this manually. Now change the lines from (as an example):

if(strcmp(header, "ELF") == 0)

to

if(antifuzz_str_equal(header, antifuzzELF))

See antifuzz.tpl.h for more comparison functions.

5.

If you have more data that you want to protect from symbolic execution, use:

antifuzz_encrypt_decrypt_buf(char *ptr, size_t fileSize) 
Owner
Chair for Sys­tems Se­cu­ri­ty
Chair for Sys­tems Se­cu­ri­ty
The source code and dataset for the RecGURU paper (WSDM 2022)

RecGURU About The Project Source code and baselines for the RecGURU paper "RecGURU: Adversarial Learning of Generalized User Representations for Cross

Chenglin Li 17 Jan 07, 2023
Code for the paper "Zero-shot Natural Language Video Localization" (ICCV2021, Oral).

Zero-shot Natural Language Video Localization (ZSNLVL) by Pseudo-Supervised Video Localization (PSVL) This repository is for Zero-shot Natural Languag

Computer Vision Lab. @ GIST 37 Dec 27, 2022
Framework that uses artificial intelligence applied to mathematical models to make predictions

LiconIA Framework that uses artificial intelligence applied to mathematical models to make predictions Interface Overview Table of contents [TOC] 1 Ar

4 Jun 20, 2021
Distilling Motion Planner Augmented Policies into Visual Control Policies for Robot Manipulation (CoRL 2021)

Distilling Motion Planner Augmented Policies into Visual Control Policies for Robot Manipulation [Project website] [Paper] This project is a PyTorch i

Cognitive Learning for Vision and Robotics (CLVR) lab @ USC 6 Feb 28, 2022
How to Leverage Multimodal EHR Data for Better Medical Predictions?

How to Leverage Multimodal EHR Data for Better Medical Predictions? This repository contains the code of the paper: How to Leverage Multimodal EHR Dat

13 Dec 13, 2022
The repo for the paper "I3CL: Intra- and Inter-Instance Collaborative Learning for Arbitrary-shaped Scene Text Detection".

I3CL: Intra- and Inter-Instance Collaborative Learning for Arbitrary-shaped Scene Text Detection Updates | Introduction | Results | Usage | Citation |

33 Jan 05, 2023
Using python and scikit-learn to make stock predictions

MachineLearningStocks in python: a starter project and guide EDIT as of Feb 2021: MachineLearningStocks is no longer actively maintained MachineLearni

Robert Martin 1.3k Dec 29, 2022
Iranian Cars Detection using Yolov5s, PyTorch

Iranian Cars Detection using Yolov5 Train 1- git clone https://github.com/ultralytics/yolov5 cd yolov5 pip install -r requirements.txt 2- Dataset ../

Nahid Ebrahimian 22 Dec 05, 2022
The official implementation of CVPR 2021 Paper: Improving Weakly Supervised Visual Grounding by Contrastive Knowledge Distillation.

Improving Weakly Supervised Visual Grounding by Contrastive Knowledge Distillation This repository is the official implementation of CVPR 2021 paper:

9 Nov 14, 2022
Code for intrusion detection system (IDS) development using CNN models and transfer learning

Intrusion-Detection-System-Using-CNN-and-Transfer-Learning This is the code for the paper entitled "A Transfer Learning and Optimized CNN Based Intrus

Western OC2 Lab 38 Dec 12, 2022
PyTorch implementation of Barlow Twins.

Barlow Twins: Self-Supervised Learning via Redundancy Reduction PyTorch implementation of Barlow Twins. @article{zbontar2021barlow, title={Barlow Tw

Facebook Research 839 Dec 29, 2022
El-Gamal on Elliptic Curve (Python)

El-Gamal-on-EC El-Gamal on Elliptic Curve (Python) References: https://docsdrive.com/pdfs/ansinet/itj/2005/299-306.pdf https://arxiv.org/ftp/arxiv/pap

3 May 04, 2022
Controlling Hill Climb Racing with Hand Tacking

Controlling Hill Climb Racing with Hand Tacking Opened Palm for Gas Closed Palm for Brake

Rohit Ingole 3 Jan 18, 2022
本步态识别系统主要基于GaitSet模型进行实现

本步态识别系统主要基于GaitSet模型进行实现。在尝试部署本系统之前,建立理解GaitSet模型的网络结构、训练和推理方法。 系统的实现效果如视频所示: 演示视频 由于模型较大,部分模型文件存储在百度云盘。 链接提取码:33mb 具体部署过程 1.下载代码 2.安装requirements.txt

16 Oct 22, 2022
Code for AutoNL on ImageNet (CVPR2020)

Neural Architecture Search for Lightweight Non-Local Networks This repository contains the code for CVPR 2020 paper Neural Architecture Search for Lig

Yingwei Li 104 Aug 31, 2022
Unofficial PyTorch implementation of Neural Additive Models (NAM) by Agarwal, et al.

nam-pytorch Unofficial PyTorch implementation of Neural Additive Models (NAM) by Agarwal, et al. [abs, pdf] Installation You can access nam-pytorch vi

Rishabh Anand 11 Mar 14, 2022
HeatNet is a python package that provides tools to build, train and evaluate neural networks designed to predict extreme heat wave events globally on daily to subseasonal timescales.

HeatNet HeatNet is a python package that provides tools to build, train and evaluate neural networks designed to predict extreme heat wave events glob

Google Research 6 Jul 07, 2022
An excellent hash algorithm combining classical sponge structure and RNN.

SHA-RNN Recurrent Neural Network with Chaotic System for Hash Functions Anonymous Authors [摘要] 在这次作业中我们提出了一种新的 Hash Function —— SHA-RNN。其以海绵结构为基础,融合了混

Houde Qian 5 May 15, 2022
A curated list of awesome Active Learning

Awesome Active Learning 🤩 A curated list of awesome Active Learning ! 🤩 Background (image source: Settles, Burr) What is Active Learning? Active lea

BAI Fan 431 Jan 03, 2023
Memory efficient transducer loss computation

Introduction This project implements the optimization techniques proposed in Improving RNN Transducer Modeling for End-to-End Speech Recognition to re

Fangjun Kuang 51 Nov 25, 2022