PyArmadillo: an alternative approach to linear algebra in Python

Overview

PyArmadillo

PyArmadillo: an alternative approach to linear algebra in Python

PyArmadillo is a linear algebra library for the Python language, with an emphasis on ease of use. It aims to provide a high-level syntax and functionality deliberately similar to Matlab/Octave, allowing mathematical operations to be expressed in a familiar and natural manner. PyArmadillo provides objects for matrices and cubes, as well as over 200 associated functions for manipulating data stored in the objects. All functions are accessible in one flat structure. Integer, floating point and complex numbers are supported. Various matrix factorisations are provided through integration with LAPACK, or one of its high performance drop-in replacements such as Intel MKL or OpenBLAS.

While frameworks such as NumPy and SciPy are available for Python, they tend to be unnecessarily verbose and cumbersome to use from a linear algebra point of view. These frameworks require users to handle data types that are not immediately intuitive, have a structure that complicates the use of common functions, and use syntax that considerably differs from Matlab.

This library is co-led by Jason Rumengan, me and Conrad Sanderson.

You might also like...
QR2Pass-project - A proof of concept for an alternative (passwordless) authentication system to a web server

QR2Pass This is a proof of concept for an alternative (passwordless) authenticat

Plover-tapey-tape: an alternative to Plover’s built-in paper tape

plover-tapey-tape plover-tapey-tape is an alternative to Plover’s built-in paper

A commany has recently introduced a new type of bidding, the average bidding, as an alternative to the bid given to the current maximum bidding
A commany has recently introduced a new type of bidding, the average bidding, as an alternative to the bid given to the current maximum bidding

Business Problem A commany has recently introduced a new type of bidding, the average bidding, as an alternative to the bid given to the current maxim

High performance, easy-to-use, and scalable machine learning (ML) package, including linear model (LR), factorization machines (FM), and field-aware factorization machines (FFM) for Python and CLI interface.
High performance, easy-to-use, and scalable machine learning (ML) package, including linear model (LR), factorization machines (FM), and field-aware factorization machines (FFM) for Python and CLI interface.

What is xLearn? xLearn is a high performance, easy-to-use, and scalable machine learning package that contains linear model (LR), factorization machin

High performance, easy-to-use, and scalable machine learning (ML) package, including linear model (LR), factorization machines (FM), and field-aware factorization machines (FFM) for Python and CLI interface.
High performance, easy-to-use, and scalable machine learning (ML) package, including linear model (LR), factorization machines (FM), and field-aware factorization machines (FFM) for Python and CLI interface.

What is xLearn? xLearn is a high performance, easy-to-use, and scalable machine learning package that contains linear model (LR), factorization machin

A python library to build Model Trees with Linear Models at the leaves.
A python library to build Model Trees with Linear Models at the leaves.

A python library to build Model Trees with Linear Models at the leaves.

Creating a Linear Program Solver by Implementing the Simplex Method in Python with NumPy
Creating a Linear Program Solver by Implementing the Simplex Method in Python with NumPy

Creating a Linear Program Solver by Implementing the Simplex Method in Python with NumPy Simplex Algorithm is a popular algorithm for linear programmi

Machine Learning From Scratch. Bare bones NumPy implementations of machine learning models and algorithms with a focus on accessibility. Aims to cover everything from linear regression to deep learning.
Machine Learning From Scratch. Bare bones NumPy implementations of machine learning models and algorithms with a focus on accessibility. Aims to cover everything from linear regression to deep learning.

Machine Learning From Scratch About Python implementations of some of the fundamental Machine Learning models and algorithms from scratch. The purpose

Comments
  • may you do me a favor. i wanna transfer matlab function to python in pyarma

    may you do me a favor. i wanna transfer matlab function to python in pyarma

    matlab function ` function output =NN_F(input)

    layer_nodes_num=[200,200,150,150]; bias=0.00001; %input=traindata(:,1); pre_layer_nodes_num=length(input); pre_layer_nodes_value=input'; % input for l=1:length(layer_nodes_num) > curr_layer_nodes_num=layer_nodes_num(l);

    clear curr_layer_nodes_value;
    for it=1:curr_layer_nodes_num
        curr_node_input_weight=randn(1,pre_layer_nodes_num);
        xx=sum(pre_layer_nodes_value.*curr_node_input_weight);
        curr_layer_nodes_value(it)=tanh(xx/2.5);
    end
    pre_layer_nodes_value=curr_layer_nodes_value;
    pre_layer_nodes_num=curr_layer_nodes_num;
    

    end output=curr_layer_nodes_value; end `

    opened by luyifanlu 6
  • Need thoughts on v0.500.0!

    Need thoughts on v0.500.0!

    Hi community,

    Thanks for the support! ~~v0.500.0 is in preparation.~~

    ~~Feel free to give out some thoughts on PyArmadillo v0.400.0 after having a play!~~

    We are happy to announce v0.500.0 is released! 🥳 🥳 🥳

    You are more than welcome to use our library in your own projects and other work :D

    opened by terryyz 6
Releases(v0.500.0)
  • v0.500.0(Feb 10, 2021)

    v0.500.0 Updates:

    • instances of mat and cube are initialised to contain zero-valued elements by default
    • added standalone zeros(), ones(), randu(), randn(), eye()
    • added pyarma_rng.set_seed(value) and pyarma_rng.set_seed_random()
    • added extra forms for lu(), qr(), qr_econ(), qz(), svd_econ()
    • added subscripting for size objects
    • range() renamed to spread() to prevent conflicts with built-in range() in Python
    • for solve(), solve_opts_* flags renamed to solve_opts.* (eg. solve_opts_fast is now solve_opts.fast)
    • for mat and cube constructors, fill_* flags renamed to fill.* (eg. fill_zeros is now fill.zeros)

    Download

    For downloading the packages, please visit here

    Source code(tar.gz)
    Source code(zip)
  • v0.490.0(Feb 8, 2021)

  • v0.400.0(Feb 3, 2021)

    Installation Notes

    • See the README file in the .tar.xz package for full installation instructions

    • Installation requirements:

      • at least Python 3.6; the minimum recommended version is Python 3.8
      • a C++ compiler that supports at least the C++11 standard
      • at least 8 GB of RAM
      • 64-bit CPU, preferably with 4+ cores
      • OpenBLAS and LAPACK
    • If you encounter any bugs or regressions, please report them

    • If you use PyArmadillo in your research and/or software, please cite the associated papers; citations are useful for the continued development and maintenance of the library

    • Linux based operating systems (eg. Fedora, Ubuntu, CentOS, Red Hat, Debian, etc)

      • Before installing PyArmadillo, first install OpenBLAS, LAPACK, Python 3, and pip3, along with the corresponding development/header files

      • On CentOS 8 / RHEL 8, the CentOS PowerTools repository may first need to be enabled: dnf config-manager --set-enabled powertools

      • Recommended packages to install before installing PyArmadillo: Fedora, CentOS, RHEL: gcc-c++, libstdc++-devel, openblas-devel, lapack-devel, python3-devel, python3-pip Ubuntu and Debian: g++, libopenblas-dev, liblapack-dev, python3-dev, python3-pip

    • macOS

      • Before installing PyArmadillo, install Xcode (version 8 or later) and then type the following command in a terminal window: xcode-select --install

      • Xcode command-line tools include the Python 3 development files, but pip3 needs to be updated: pip3 install --user --upgrade pip

      • The "Accelerate" framework is used for accessing BLAS and LAPACK functions; see the README file in the package for more information

    • Windows (x64)

      • Before installing Pyarmadillo, fist install Microsoft Visual Studio (2019 or later) and use the x64 Native Tools Command Prompt

      • The PyArmadillo package contains pre-compiled OpenBLAS 0.3.10, which is used for accessing BLAS and LAPACK functions

      • Alternative implementations and/or distributions of BLAS and LAPACK are available at:

        • http://software.intel.com/en-us/intel-mkl/
        • http://icl.cs.utk.edu/lapack-for-windows/lapack/
        • http://ylzhao.blogspot.com.au/2013/10/blas-lapack-precompiled-binaries-for.html
      • Caveat: 32-bit Windows (x86) is currently not supported

      • Caveat: for any high performance scientific/engineering workloads, we strongly recommend using a Linux based operating system.

    Source code(tar.gz)
    Source code(zip)
    pyarmadillo-0.400.0.tar.xz(6.56 MB)
Owner
Terry Zhuo
Undergraduate @UNSWComputing; RA @MonashNLP
Terry Zhuo
Turning SymPy expressions into PyTorch modules.

sympytorch A micro-library as a convenience for turning SymPy expressions into PyTorch Modules. All SymPy floats become trainable parameters. All SymP

Patrick Kidger 89 Dec 13, 2022
UT-Sarulab MOS prediction system using SSL models

UTMOS: UTokyo-SaruLab MOS Prediction System Official implementation of "UTMOS: UTokyo-SaruLab System for VoiceMOS Challenge 2022" submitted to INTERSP

sarulab-speech 58 Nov 22, 2022
Numerical differential equation solvers in JAX. Autodifferentiable and GPU-capable.

Diffrax Numerical differential equation solvers in JAX. Autodifferentiable and GPU-capable. Diffrax is a JAX-based library providing numerical differe

Patrick Kidger 717 Jan 09, 2023
The official GitHub repository for the Argoverse 2 dataset.

Argoverse 2 API Official GitHub repository for the Argoverse 2 family of datasets. If you have any questions or run into any problems with either the

Argo AI 156 Dec 23, 2022
SymPy-powered, Wolfram|Alpha-like answer engine totally in your browser, without backend computation

SymPy Beta SymPy Beta is a fork of SymPy Gamma. The purpose of this project is to run a SymPy-powered, Wolfram|Alpha-like answer engine totally in you

Liumeo 25 Dec 21, 2022
Official Implementation for Encoding in Style: a StyleGAN Encoder for Image-to-Image Translation

Encoding in Style: a StyleGAN Encoder for Image-to-Image Translation We present a generic image-to-image translation framework, pixel2style2pixel (pSp

2.8k Dec 30, 2022
A GPT, made only of MLPs, in Jax

MLP GPT - Jax (wip) A GPT, made only of MLPs, in Jax. The specific MLP to be used are gMLPs with the Spatial Gating Units. Working Pytorch implementat

Phil Wang 53 Sep 27, 2022
PClean: A Domain-Specific Probabilistic Programming Language for Bayesian Data Cleaning

PClean: A Domain-Specific Probabilistic Programming Language for Bayesian Data Cleaning Warning: This is a rapidly evolving research prototype.

MIT Probabilistic Computing Project 190 Dec 27, 2022
Python Implementation of Chess Playing AI with variable difficulty

Chess AI with variable difficulty level implemented using the MiniMax AB-Pruning Algorithm

Ali Imran 7 Feb 20, 2022
A short code in python, Enchpyter, is able to encrypt and decrypt words as you determine, of course

Enchpyter Enchpyter is a program do encrypt and decrypt any word you want (just letters). You enter how many letters jumps and write the word, so, the

João Assalim 2 Oct 10, 2022
Class-Balanced Loss Based on Effective Number of Samples. CVPR 2019

Class-Balanced Loss Based on Effective Number of Samples Tensorflow code for the paper: Class-Balanced Loss Based on Effective Number of Samples Yin C

Yin Cui 546 Jan 08, 2023
PyTorch implementation of UPFlow (unsupervised optical flow learning)

UPFlow: Upsampling Pyramid for Unsupervised Optical Flow Learning By Kunming Luo, Chuan Wang, Shuaicheng Liu, Haoqiang Fan, Jue Wang, Jian Sun Megvii

kunming luo 87 Dec 20, 2022
Create UIs for prototyping your machine learning model in 3 minutes

Note: We just launched Hosted, where anyone can upload their interface for permanent hosting. Check it out! Welcome to Gradio Quickly create customiza

Gradio 11.7k Jan 07, 2023
Temporal Segment Networks (TSN) in PyTorch

TSN-Pytorch We have released MMAction, a full-fledged action understanding toolbox based on PyTorch. It includes implementation for TSN as well as oth

1k Jan 03, 2023
This is the official pytorch implementation of the BoxEL for the description logic EL++

BoxEL: Box EL++ Embedding This is the official pytorch implementation of the BoxEL for the description logic EL++. BoxEL++ is a geometric approach bas

1 Nov 03, 2022
Discriminative Condition-Aware PLDA

DCA-PLDA This repository implements the Discriminative Condition-Aware Backend described in the paper: L. Ferrer, M. McLaren, and N. Brümmer, "A Speak

Luciana Ferrer 31 Aug 05, 2022
Rename Images with Auto Generated Neural Image Captions

Recaption Images with Generated Neural Image Caption Example Usage: Commandline: Recaption all images from folder /home/feng/Downloads/images to folde

feng wang 3 May 01, 2022
Unsupervised MRI Reconstruction via Zero-Shot Learned Adversarial Transformers

Official TensorFlow implementation of the unsupervised reconstruction model using zero-Shot Learned Adversarial TransformERs (SLATER). (https://arxiv.

ICON Lab 22 Dec 22, 2022
Conservative and Adaptive Penalty for Model-Based Safe Reinforcement Learning

Conservative and Adaptive Penalty for Model-Based Safe Reinforcement Learning This is the official repository for Conservative and Adaptive Penalty fo

7 Nov 22, 2022
Unsupervised Learning of Video Representations using LSTMs

Unsupervised Learning of Video Representations using LSTMs Code for paper Unsupervised Learning of Video Representations using LSTMs by Nitish Srivast

Elman Mansimov 341 Dec 20, 2022