Crowd sourced training data for Rasa NLU models

Overview

Open in Streamlit

NLU Training Data

Crowd-sourced training data for the development and testing of Rasa NLU models.

If you're interested in grabbing some data feel free to check out our live data fetching ui.


About this repository

This is an experiment with the goal of providing basic training data for developing chatbots, therefore, this repository is open for contributions!

We need your help to create an open source dataset to empower chatbot makers and conversational AI enthusiasts alike, and we very much appreciate your support in expanding the collection of data available to the community.

How do I donate my training data?

Each folder should contain a list of multiple intents, consider if the set of training data you're contributing could fit within an existing folder before creating a new one.

To contribute via pull request, follow these steps:

  1. Create an issue describing the training data you would like to contribute.

  2. Create a new file with a folder title and a NLU.yml file, or contribute to an existing folder.

  3. In the NLU.yml file, format your training data using YAML, remove all entities (see script), title each section with the intent types and add a short description e.g.intent:inform_rain <!--The user says that it is currently raining somewhere.-->

  4. Update the README.md file, include a list of the intent types added.

  5. Create a pull request describing your changes.

Your pull request will be reviewed by a maintainer, who will get back to you about any necessary changes or questions. You will also be asked to sign a Contributor License Agreement.

FAQs

How should I label my intents?

Please always put the domain at the end of each intent. For example: ask_transport

What do I do about multi-intent utterences?

If you would like to contribute multi-intent utterences, please add a + to indicate an additional intent, for example: affirm+ask_transport

What about training data that’s not in English?

Currently, we are unable to evaluate the quality of all language contributions, and therefore, during the initial phase we can only accept English training data to the repository. However, we understand that the Rasa community is a global one, and in the long-term we would like to find a solution for this in collaboration with the community.

Why do I need to remove entities from my training data?

We would like to make the training data as easy as possible to adopt to new training models and annotating entities highly dependent on your bot’s purpose. Therefore, we will first focus on collecting training data that only includes intents.

To help you remove the annotated entities from your training data, you can run this script.


About Rasa

Owner
Rasa
Open source machine learning tools for developers to build, improve, and deploy text-and voice-based chatbots and assistants
Rasa
STonKGs is a Sophisticated Transformer that can be jointly trained on biomedical text and knowledge graphs

STonKGs STonKGs is a Sophisticated Transformer that can be jointly trained on biomedical text and knowledge graphs. This multimodal Transformer combin

STonKGs 27 Aug 11, 2022
Multiple implementations for abstractive text summurization , using google colab

Text Summarization models if you are able to endorse me on Arxiv, i would be more than glad https://arxiv.org/auth/endorse?x=FRBB89 thanks This repo i

463 Dec 26, 2022
β˜€οΈ Measuring the accuracy of BBC weather forecasts in Honolulu, USA

Accuracy of BBC Weather forecasts for Honolulu This repository records the forecasts made by BBC Weather for the city of Honolulu, USA. Essentially, t

Max Halford 12 Oct 15, 2022
This is a really simple text-to-speech app made with python and tkinter.

Tkinter Text-to-Speech App by Souvik Roy This is a really simple tkinter app which converts the text you have entered into a speech. It is created wit

Souvik Roy 1 Dec 21, 2021
PyTorch implementation of NATSpeech: A Non-Autoregressive Text-to-Speech Framework

A Non-Autoregressive Text-to-Speech (NAR-TTS) framework, including official PyTorch implementation of PortaSpeech (NeurIPS 2021) and DiffSpeech (AAAI 2022)

760 Jan 03, 2023
Universal Adversarial Triggers for Attacking and Analyzing NLP (EMNLP 2019)

Universal Adversarial Triggers for Attacking and Analyzing NLP This is the official code for the EMNLP 2019 paper, Universal Adversarial Triggers for

Eric Wallace 248 Dec 17, 2022
Python library for interactive topic model visualization. Port of the R LDAvis package.

pyLDAvis Python library for interactive topic model visualization. This is a port of the fabulous R package by Carson Sievert and Kenny Shirley. pyLDA

Ben Mabey 1.7k Dec 20, 2022
Precision Medicine Knowledge Graph (PrimeKG)

PrimeKG Website | bioRxiv Paper | Harvard Dataverse Precision Medicine Knowledge Graph (PrimeKG) presents a holistic view of diseases. PrimeKG integra

Machine Learning for Medicine and Science @ Harvard 103 Dec 10, 2022
Generate custom detailed survey paper with topic clustered sections and proper citations, from just a single query in just under 30 mins !!

Auto-Research A no-code utility to generate a detailed well-cited survey with topic clustered sections (draft paper format) and other interesting arti

Sidharth Pal 20 Dec 14, 2022
πŸš€ RocketQA, dense retrieval for information retrieval and question answering, including both Chinese and English state-of-the-art models.

In recent years, the dense retrievers based on pre-trained language models have achieved remarkable progress. To facilitate more developers using cutt

475 Jan 04, 2023
An easy to use, user-friendly and efficient code for extracting OpenAI CLIP (Global/Grid) features from image and text respectively.

Extracting OpenAI CLIP (Global/Grid) Features from Image and Text This repo aims at providing an easy to use and efficient code for extracting image &

Jianjie(JJ) Luo 13 Jan 06, 2023
In this project, we aim to achieve the task of predicting emojis from tweets. We aim to investigate the relationship between words and emojis.

Making Emojis More Predictable by Karan Abrol, Karanjot Singh and Pritish Wadhwa, Natural Language Processing (CSE546) under the guidance of Dr. Shad

Karanjot Singh 2 Jan 17, 2022
Shellcode antivirus evasion framework

Schrodinger's Cat Schrodinger'sCat is a Shellcode antivirus evasion framework Technical principle Please visit my blog https://idiotc4t.com/ How to us

idiotc4t 27 Jul 09, 2022
Integrating the Best of TF into PyTorch, for Machine Learning, Natural Language Processing, and Text Generation. This is part of the CASL project: http://casl-project.ai/

Texar-PyTorch is a toolkit aiming to support a broad set of machine learning, especially natural language processing and text generation tasks. Texar

ASYML 726 Dec 30, 2022
PyTorch implementation of "data2vec: A General Framework for Self-supervised Learning in Speech, Vision and Language" from Meta AI

data2vec-pytorch PyTorch implementation of "data2vec: A General Framework for Self-supervised Learning in Speech, Vision and Language" from Meta AI (F

Aryan Shekarlaban 105 Jan 04, 2023
A paper list of pre-trained language models (PLMs).

Large-scale pre-trained language models (PLMs) such as BERT and GPT have achieved great success and become a milestone in NLP.

RUCAIBox 124 Jan 02, 2023
Python interface for converting Penn Treebank trees to Stanford Dependencies and Universal Depenencies

PyStanfordDependencies Python interface for converting Penn Treebank trees to Universal Dependencies and Stanford Dependencies. Example usage Start by

David McClosky 64 May 08, 2022
The Classical Language Toolkit

Notice: This Git branch (dev) contains the CLTK's upcoming major release (v. 1.0.0). See https://github.com/cltk/cltk/tree/master and https://docs.clt

Classical Language Toolkit 754 Jan 09, 2023
KLUE-baseline contains the baseline code for the Korean Language Understanding Evaluation (KLUE) benchmark.

KLUE Baseline Korean(ν•œκ΅­μ–΄) KLUE-baseline contains the baseline code for the Korean Language Understanding Evaluation (KLUE) benchmark. See our paper fo

74 Dec 13, 2022
Code for paper: An Effective, Robust and Fairness-awareHate Speech Detection Framework

BiQQLSTM_HS Code and data for paper: Title: An Effective, Robust and Fairness-awareHate Speech Detection Framework. Authors: Guanyi Mou and Kyumin Lee

Guanyi Mou 2 Dec 27, 2022