Flexible-CLmser: Regularized Feedback Connections for Biomedical Image Segmentation

Overview

Flexible-CLmser: Regularized Feedback Connections for Biomedical Image Segmentation

The skip connections in U-Net pass features from the levels of encoder to the ones of decoder in a symmetrical way, which makes U-Net and its variants become state-of-the-art approaches for biomedical image segmentation. However, the U-Net skip connections are unidirectional without considering feedback from the decoder, which may be used to further improve the segmentation performance. In this paper, we exploit the feedback information to recurrently refine the segmentation. We develop a deep bidirectional network based on the least mean square error reconstruction (Lmser) self-organizing network, an early network by folding the autoencoder along the central hidden layer. Such folding makes the neurons on the paired layers between encoder and decoder merge into one, equivalently forming bidirectional skip connections between encoder and decoder. We find that although the feedback links increase the segmentation accuracy, they may bring noise into the segmentation when the network proceeds recurrently. To tackle this issue, we present a gating and masking mechanism on the feedback connections to filter the irrelevant information. Experimental results on MoNuSeg, TNBC, and EM membrane datasets demonstrate that our method are robust and outperforms state-of-the-art methods.

This repository holds the Python implementation of the method described in the paper published in BIBM 2021.

Boheng Cao, Shikui Tu*, Lei Xu, "Flexible-CLmser: Regularized Feedback Connections for Biomedical Image Segmentation", BIBM2021

Content

  1. Structure
  2. Requirements
  3. Data
  4. Training
  5. Testing
  6. Acknowledgement

Structure

--checkpoints

# pretrained models

--data

# data for MoNuSeg, TNBC, and EM

--pytorch_version

# code

Requirements

  • Python 3.6 or higher.
  • PIL >= 7.0.0
  • matplotlib >= 3.3.1
  • tqdm >= 4.54.1
  • imgaug >= 0.4.0
  • torch >= 1.5.0
  • torchvision >= 0.6.0

...

Data

The author of BiONet has already gathered data of three datasets (Including EM https://bionets.github.io/Piriform_data.zip).

Please refer to the official website (or project repo) for license and terms of usage.

MoNuSeg: https://monuseg.grand-challenge.org/Data/

TNBC: https://github.com/PeterJackNaylor/DRFNS

We also provide our data (For EM only includes stack 1 and 4) and pretrained models here: https://pan.baidu.com/s/1pHTexUIS8ganD_BwbWoAXA password:sjtu

or

https://drive.google.com/drive/folders/1GJq-AV1L1UNhI2WNMDuynYyGtOYpjQEi?usp=sharing

Training

As an example, for EM segmentation, you can simply run:

python main.py --train_data ./data/EM/train --valid_data ./data/EM/test --exp EM_1 --alpha=0.4

Some of the available arguments are:

Argument Description Default Type
--epochs Training epochs 300 int
--batch_size Batch size 2 int
--steps Steps per epoch 250 int
--lr Learning rate 0.01 float
--lr_decay Learning rate decay 3e-5 float
--iter recurrent iteration 3 int
--train_data Training data path ./data/monuseg/train str
--valid_data Validating data path ./data/monuseg/test str
--valid_dataset Validating dataset type monuseg str
--exp Experiment name(use the same name when testing) 1 str
--evaluate_only If only evaluate using existing model store_true action
--alpha Weight of skip/backward connection 0.4 float

Testing

For MonuSeg and TNBC, you can just use our code to test the model, for example

python main.py --valid_data ./data/tnbc --valid_dataset tnbc --exp your_experiment_id --alpha=0.4 --evaluate_only

For EM, our code can not give the Rand F-score directly, but our code will save the ground truth and result in /checkpoints/your_experiment_id/outputs, you can use the tool ImageJ and code of http://brainiac2.mit.edu/isbi_challenge/evaluation to get Rand F-score.

Acknowledgement

This project would not have been finished without using the codes or files from the following open source projects:

BiONet

Reference

Please cite our work if you find our code/paper is useful to your work.

tbd
Owner
Boheng Cao
SJTU CS
Boheng Cao
Implementation of Transformer in Transformer, pixel level attention paired with patch level attention for image classification, in Pytorch

Transformer in Transformer Implementation of Transformer in Transformer, pixel level attention paired with patch level attention for image c

Phil Wang 272 Dec 23, 2022
Neural Point-Based Graphics

Neural Point-Based Graphics Project   Video   Paper Neural Point-Based Graphics Kara-Ali Aliev1 Artem Sevastopolsky1,2 Maria Kolos1,2 Dmitry Ulyanov3

Ali Aliev 252 Dec 13, 2022
This repository contains code from the paper "TTS-GAN: A Transformer-based Time-Series Generative Adversarial Network"

TTS-GAN: A Transformer-based Time-Series Generative Adversarial Network This repository contains code from the paper "TTS-GAN: A Transformer-based Tim

Intelligent Multimodal Computing and Sensing Laboratory (IMICS Lab) - Texas State University 108 Dec 29, 2022
Revisting Open World Object Detection

Revisting Open World Object Detection Installation See INSTALL.md. Dataset Our new data division is based on COCO2017. We divide the training set into

58 Dec 23, 2022
(Python, R, C/C++) Isolation Forest and variations such as SCiForest and EIF, with some additions (outlier detection + similarity + NA imputation)

IsoTree Fast and multi-threaded implementation of Extended Isolation Forest, Fair-Cut Forest, SCiForest (a.k.a. Split-Criterion iForest), and regular

141 Dec 29, 2022
Human-Pose-and-Motion History

Human Pose and Motion Scientist Approach Eadweard Muybridge, The Galloping Horse Portfolio, 1887 Etienne-Jules Marey, Descent of Inclined Plane, Chron

Daito Manabe 47 Dec 16, 2022
Estimating Example Difficulty using Variance of Gradients

Estimating Example Difficulty using Variance of Gradients This repository contains source code necessary to reproduce some of the main results in the

Chirag Agarwal 48 Dec 26, 2022
Open-sourcing the Slates Dataset for recommender systems research

FINN.no Recommender Systems Slate Dataset This repository accompany the paper "Dynamic Slate Recommendation with Gated Recurrent Units and Thompson Sa

FINN.no 48 Nov 28, 2022
Gans-in-action - Companion repository to GANs in Action: Deep learning with Generative Adversarial Networks

GANs in Action by Jakub Langr and Vladimir Bok List of available code: Chapter 2: Colab, Notebook Chapter 3: Notebook Chapter 4: Notebook Chapter 6: C

GANs in Action 914 Dec 21, 2022
Semantic Image Synthesis with SPADE

Semantic Image Synthesis with SPADE New implementation available at imaginaire repository We have a reimplementation of the SPADE method that is more

NVIDIA Research Projects 7.3k Jan 07, 2023
Jupyter Dock is a set of Jupyter Notebooks for performing molecular docking protocols interactively, as well as visualizing, converting file formats and analyzing the results.

Molecular Docking integrated in Jupyter Notebooks Description | Citation | Installation | Examples | Limitations | License Table of content Descriptio

Angel J. Ruiz Moreno 173 Dec 25, 2022
Bottleneck Transformers for Visual Recognition

Bottleneck Transformers for Visual Recognition Experiments Model Params (M) Acc (%) ResNet50 baseline (ref) 23.5M 93.62 BoTNet-50 18.8M 95.11% BoTNet-

Myeongjun Kim 236 Jan 03, 2023
GAN JAX - A toy project to generate images from GANs with JAX

GAN JAX - A toy project to generate images from GANs with JAX This project aims to bring the power of JAX, a Python framework developped by Google and

Valentin Goldité 14 Nov 29, 2022
Tracking Progress in Question Answering over Knowledge Graphs

Tracking Progress in Question Answering over Knowledge Graphs Table of contents Question Answering Systems with Descriptions The QA Systems Table cont

Knowledge Graph Question Answering 47 Jan 02, 2023
Deep learning model for EEG artifact removal

DeepSeparator Introduction Electroencephalogram (EEG) recordings are often contaminated with artifacts. Various methods have been developed to elimina

23 Dec 21, 2022
Face Depixelizer based on "PULSE: Self-Supervised Photo Upsampling via Latent Space Exploration of Generative Models" repository.

NOTE We have noticed a lot of concern that PULSE will be used to identify individuals whose faces have been blurred out. We want to emphasize that thi

Denis Malimonov 2k Dec 29, 2022
The code used for the free [email protected] Webinar series on Reinforcement Learning in Finance

Reinforcement Learning in Finance [email protected] Webinar This repository provides the code f

Yves Hilpisch 62 Dec 22, 2022
PyTorch implementation of adversarial patch

adversarial-patch PyTorch implementation of adversarial patch This is an implementation of the Adversarial Patch paper. Not official and likely to hav

Jamie Hayes 172 Nov 29, 2022
Framework for joint representation learning, evaluation through multimodal registration and comparison with image translation based approaches

CoMIR: Contrastive Multimodal Image Representation for Registration Framework 🖼 Registration of images in different modalities with Deep Learning 🤖

Methods for Image Data Analysis - MIDA 55 Dec 09, 2022
Latte: Cross-framework Python Package for Evaluation of Latent-based Generative Models

Cross-framework Python Package for Evaluation of Latent-based Generative Models Latte Latte (for LATent Tensor Evaluation) is a cross-framework Python

Karn Watcharasupat 30 Sep 08, 2022