Text Extraction Formulation + Feedback Loop for state-of-the-art WSD (EMNLP 2021)

Related tags

Deep Learningconsec
Overview

ConSeC

PWC

ConSeC is a novel approach to Word Sense Disambiguation (WSD), accepted at EMNLP 2021. It frames WSD as a text extraction task and features a feedback loop strategy that allows the disambiguation of a target word to be conditioned not only on its context but also on the explicit senses assigned to nearby words.

ConSeC Image

If you find our paper, code or framework useful, please reference this work in your paper:

@inproceedings{barba-etal-2021-consec,
    title = "{C}on{S}e{C}: Word Sense Disambiguation as Continuous Sense Comprehension",
    author = "Barba, Edoardo  and
      Procopio, Luigi  and
      Navigli, Roberto",
    booktitle = "Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing",
    month = nov,
    year = "2021",
    address = "Online and Punta Cana, Dominican Republic",
    publisher = "Association for Computational Linguistics",
    url = "https://aclanthology.org/2021.emnlp-main.112",
    pages = "1492--1503",
}

Setup Env

Requirements:

  • Debian-based (e.g. Debian, Ubuntu, ...) system
  • conda installed

Run the following command to quickly setup the env needed to run our code:

bash setup.sh

It's a bash command that will setup a conda environment with everything you need. Just answer the prompts as you proceed.

Finally, download the following resources:

  • Wikipedia Freqs. This is a compressed folder containing the files needed to compute the PMI score. Once downloaded, place the file inside data/ and run:
    cd data/
    tar -xvf pmi.tar.gz
    rm pmi.tar.gz
    cd ..
  • optionally, you can download the checkpoint trained on Semcor only that achieves 82.0 on ALL; place it inside the experiments/ folder (we recommend experiments/released-ckpts/)

Train

This is a PyTorch Lightning project with hydra configurations files, so most of the training parameters (e.g. datasets, optimizer, model, ...) are specified in yaml files. If you are not familiar with hydra and want to play a bit with training new models, we recommend going first through hydra tutorials; otherwise, you can skip this section (but you should still checkout hydra as it's an amazing piece of software!).

Anyway, training is done via the training script, src/scripts/model/train.py, and its parameters are read from the .yaml files in the conf/ folders (but for the conf/test/ folder which is used for evaluation). Once you applied all your desired changes, you can run the new training with:

(consec) [email protected]:~/consec$ PYTHONPATH=$(pwd) python src/scripts/model/train.py

Evaluate

Evaluation is similarly handled via hydra configuration files, located in the conf/test/ folder. There's a single file there, which specifies how to evaluate (e.g. model checkpoint and test to use) against the framework of Raganato et al. (2017) (we will include XL-WSD, along with its checkpoints, later on). Parameters are quite self-explanatory and you might be most interested in the following ones:

  • model.model_checkpoint: path to the target checkpoint to use
  • test_raganato_path: path to the test file to evaluate against

To make a practical example, to evaluate the checkpoint we released against SemEval-2007, run the following command:

(consec) [email protected]:~/consec$ PYTHONPATH=$(pwd) python src/scripts/model/raganato_evaluate.py model.model_checkpoint=experiments/released-ckpts/consec_semcor_normal_best.ckpt test_raganato_path=data/WSD_Evaluation_Framework/Evaluation_Datasets/semeval2007/semeval2007

NOTE: test_raganato_path expects what we refer to as a raganato path, that is, a prefix path such that both {test_raganato_path}.data.xml and {test_raganato_path}.gold.key.txt exist (and have the same role as in the standard evaluation framework).

Interactive Predict

We also implemented an interactive predict that allows you to query the model interactively; given as input:

  • a word in a context
  • its candidate definitions
  • its context definitions the model will disambiguate the target word. Check it out with:
(consec) [email protected]:~/consec$ PYTHONPATH=$(pwd) python src/scripts/model/predict.py experiments/released-ckpts/consec_semcor_normal_best.ckpt -t
Enter space-separated text: I have a beautiful dog
Target position: 4
Enter candidate lemma-def pairs. " --- " separated. Enter to stop
 * dog --- a member of the genus Canis
 * dog --- someone who is morally reprehensible
 * 
Enter context lemma-def-position tuples. " --- " separated. Position should be token position in space-separated input. Enter to stop
 * beautiful --- delighting the senses or exciting intellectual or emotional admiration --- 3
 * 
        # predictions
                 * 0.9939        dog     a member of the genus Canis 
                 * 0.0061        dog     someone who is morally reprehensible 

The scores assigned to each prediction are their probabilities.

Acknowledgments

The authors gratefully acknowledge the support of the ERC Consolidator Grant MOUSSE No. 726487 under the European Union’s Horizon 2020 research and innovation programme.

This work was supported in part by the MIUR under grant “Dipartimenti di eccellenza 2018-2022” of the Department of Computer Science of the Sapienza University of Rome.

License

This work is under the Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) license

Owner
Sapienza NLP group
The NLP group at the Sapienza University of Rome
Sapienza NLP group
Just playing with getting CLIP Guided Diffusion running locally, rather than having to use colab.

CLIP-Guided-Diffusion Just playing with getting CLIP Guided Diffusion running locally, rather than having to use colab. Original colab notebooks by Ka

Nerdy Rodent 336 Dec 09, 2022
Real-time Neural Representation Fusion for Robust Volumetric Mapping

NeuralBlox: Real-Time Neural Representation Fusion for Robust Volumetric Mapping Paper | Supplementary This repository contains the implementation of

ETHZ ASL 106 Dec 24, 2022
[ICCV'21] NEAT: Neural Attention Fields for End-to-End Autonomous Driving

NEAT: Neural Attention Fields for End-to-End Autonomous Driving Paper | Supplementary | Video | Poster | Blog This repository is for the ICCV 2021 pap

254 Jan 02, 2023
Code for "SRHEN: Stepwise-Refining Homography Estimation Network via Parsing Geometric Correspondences in Deep Latent Space"

SRHEN This is a better and simpler implementation for "SRHEN: Stepwise-Refining Homography Estimation Network via Parsing Geometric Correspondences in

1 Oct 28, 2022
Hand Gesture Volume Control is AIML based project which uses image processing to control the volume of your Computer.

Hand Gesture Volume Control Modules There are basically three modules Handtracking Program Handtracking Module Volume Control Program Handtracking Pro

VITTAL 1 Jan 12, 2022
An end-to-end project on customer segmentation

End-to-end Customer Segmentation Project Note: This project is in progress. Tools Used in This Project Prefect: Orchestrate workflows hydra: Manage co

Ocelot Consulting 8 Oct 06, 2022
Tutorial materials for Part of NSU Intro to Deep Learning with PyTorch.

Intro to Deep Learning Materials are part of North South University (NSU) Intro to Deep Learning with PyTorch workshop series. (Slides) Related materi

Hasib Zunair 9 Jun 08, 2022
LEAP: Learning Articulated Occupancy of People

LEAP: Learning Articulated Occupancy of People Paper | Video | Project Page This is the official implementation of the CVPR 2021 submission LEAP: Lear

Neural Bodies 60 Nov 18, 2022
Official Pytorch Implementation of Unsupervised Image Denoising with Frequency Domain Knowledge

Unsupervised Image Denoising with Frequency Domain Knowledge (BMVC 2021 Oral) : Official Project Page This repository provides the official PyTorch im

Donggon Jang 12 Sep 26, 2022
Implements VQGAN+CLIP for image and video generation, and style transfers, based on text and image prompts. Emphasis on ease-of-use, documentation, and smooth video creation.

VQGAN-CLIP-GENERATOR Overview This is a package (with available notebook) for running VQGAN+CLIP locally, with a focus on ease of use, good documentat

Ryan Hamilton 98 Dec 30, 2022
Pyramid Grafting Network for One-Stage High Resolution Saliency Detection. CVPR 2022

PGNet Pyramid Grafting Network for One-Stage High Resolution Saliency Detection. CVPR 2022, CVPR 2022 (arXiv 2204.05041) Abstract Recent salient objec

CVTEAM 109 Dec 05, 2022
An implementation of "Learning human behaviors from motion capture by adversarial imitation"

Merel-MoCap-GAIL An implementation of Merel et al.'s paper on generative adversarial imitation learning (GAIL) using motion capture (MoCap) data: Lear

Yu-Wei Chao 34 Nov 12, 2022
Train Yolov4 using NBX-Jobs

yolov4-trainer-nbox Train Yolov4 using NBX-Jobs. Use the powerfull functionality available in nbox-SDK repo to train a tiny-Yolo v4 model on Pascal VO

Yash Bonde 1 Jan 12, 2022
Technical Analysis Indicators - Pandas TA is an easy to use Python 3 Pandas Extension with 130+ Indicators

Pandas TA - A Technical Analysis Library in Python 3 Pandas Technical Analysis (Pandas TA) is an easy to use library that leverages the Pandas package

Kevin Johnson 3.2k Jan 09, 2023
Supporting code for "Autoregressive neural-network wavefunctions for ab initio quantum chemistry".

naqs-for-quantum-chemistry This repository contains the codebase developed for the paper Autoregressive neural-network wavefunctions for ab initio qua

Tom Barrett 24 Dec 23, 2022
学习 python3 以来写的一些垃圾玩具……

和东哥做兄弟 Author: chiupam 版权 未经本人同意,仓库内所有资源文件,禁止任何公众号、自媒体、开发者进行任何形式的转载、发布、搬运。 声明 这不是一个开源项目,只是把 GitHub 当作一个代码的存储空间,本项目不接受任何开源要求。 仅用于学习研究,禁止用于商业用途,不能保证其合法性

Chiupam 67 Mar 26, 2022
Indonesian Car License Plate Character Recognition using Tensorflow, Keras and OpenCV.

Monopol Indonesian Car License Plate (Indonesia Mobil Nomor Polisi) Character Recognition using Tensorflow, Keras and OpenCV. Background This applicat

Jayaku Briliantio 3 Apr 07, 2022
3D ResNets for Action Recognition (CVPR 2018)

3D ResNets for Action Recognition Update (2020/4/13) We published a paper on arXiv. Hirokatsu Kataoka, Tenga Wakamiya, Kensho Hara, and Yutaka Satoh,

Kensho Hara 3.5k Jan 06, 2023
Official code release for "Learned Spatial Representations for Few-shot Talking-Head Synthesis" ICCV 2021

Official code release for "Learned Spatial Representations for Few-shot Talking-Head Synthesis" ICCV 2021

Moustafa Meshry 16 Oct 05, 2022