Dual languaged (rus+eng) tool for packing and unpacking archives of Silky Engine.

Overview

SilkyArcTool

English

Dual languaged (rus+eng) GUI tool for packing and unpacking archives of Silky Engine. It is not the same arc as used in Ai6WIN. If you want to work with Silky Engine's .mes scripts, use mesScriptAsseAndDisassembler instead.

Why this tool was created, if there are other tools that can work with this type of archive? The answer is simple: because there was no actually good enough tools. One tool can only extract the data, other -- only pack, but without using original compression, that resulting in outrageous big output archives. My tool solves all the issues -- not only it can extract archives, but also pack them from files, compressing it by algorithm (variation of LZSS), extraction of which was implemented by Silky Engine. Through the tool has one problem -- it works quite slow, especially for packing, so you may need to wait for some minutes (due to implementation compression algorithm on Python).

Русский

Двуязычное средство (рус+англ) для распаковки и запаковки архивов Silky Engine. Не стоит путать его с разновидностью .arc, используемой в Ai6WIN. Ежели вам нужно работать со скриптами .mes Silky Engine, используйте mesScriptAsseAndDisassembler.

Почему же это средство было создано, ежель и так есть средства, что могут работать с сим типом архива? Ответ прост: ни одно из тех существующих средств не является достаточно хорошим. Одно может только извлекать, другое -- только запаковывать, однако ж без использования оригинального алгоритма сжатия, из-за чего архивы получаются большими сверх всякой меры. Но моё средство исправляет эти проблемы: оно может как распаковывать данные, так и запаковывать их, причём сжимая файлы так, как их хочет видеть Silky Engine (разновидностью LZSS). Единственная, однако, проблема у средства есть -- несколько медленно работает оно, особенно при запаковке, так что может придётся прождать несколько минут (ввиду реализации алгоритма сжатия на Python).

Usage

English

image

  1. Run the tool (main.py or .exe).
  2. Print filename (with extension!!!) or choose it by clicking on button "...".
  3. Print directory or choose it by clicking on button "...".
  4. Print "0", if thou want to unpack, or "1", if thou want to pack.
  5. Just wait until it done.

Русский

image

  1. Запустите пакет средств (main.py иль .exe).
  2. Введите имя архива (с расширением!!!) или выберите его, нажав на кнопку "...".
  3. Введите имя директории файлов или выберите его, нажав на кнопку "...".
  4. Введите "0", коли распаковать желаете, али "1", коли запаковать желаете.
  5. Ждите завершения.

Tested on:

On English

На русском

You might also like...
Creating a chess engine using GPT-3
Creating a chess engine using GPT-3

GPT3Chess Creating a chess engine using GPT-3 Code for my article : https://towardsdatascience.com/gpt-3-play-chess-d123a96096a9 My game (white) vs GP

A simple command line tool for text to image generation, using OpenAI's CLIP and a BigGAN
A simple command line tool for text to image generation, using OpenAI's CLIP and a BigGAN

artificial intelligence cosmic love and attention fire in the sky a pyramid made of ice a lonely house in the woods marriage in the mountains lantern

A tool helps build a talk preview image by combining the given background image and talk event description

talk-preview-img-builder A tool helps build a talk preview image by combining the given background image and talk event description Installation and U

Phomber is infomation grathering tool that reverse search phone numbers and get their details, written in python3.
Phomber is infomation grathering tool that reverse search phone numbers and get their details, written in python3.

A Infomation Grathering tool that reverse search phone numbers and get their details ! What is phomber? Phomber is one of the best tools available fo

Tool which allow you to detect and translate text.
Tool which allow you to detect and translate text.

Text detection and recognition This repository contains tool which allow to detect region with text and translate it one by one. Description Two pretr

A unified tokenization tool for Images, Chinese and English.

ICE Tokenizer Token id [0, 20000) are image tokens. Token id [20000, 20100) are common tokens, mainly punctuations. E.g., icetk[20000] == 'unk', ice

Comments
  • Invalid argument

    Invalid argument

    I tried your tool with the .arc files of the game "[Silky's] Gakuen Saimin Reido -Sakki made, Daikirai Datta Hazu na no ni-" (学園催眠隷奴~さっきまで、大嫌いだったはずなのに~), but it keeps giving me this error:

    image

    opened by Nephiro 3
  • Extraction fails if archives are on other drive

    Extraction fails if archives are on other drive

    Exception in Tkinter callback
    Traceback (most recent call last):
      File "C:\Program Files\Python39\lib\tkinter\__init__.py", line 1892, in __call__
      File "C:\Users\Александр\Desktop\Tester\SilkyArcTool\gui.py", line 316, in _choose_file
      File "C:\Program Files\Python39\lib\ntpath.py", line 703, in relpath
    ValueError: path is on mount 'C:', start on mount 'Y:'
    Exception in Tkinter callback
    Traceback (most recent call last):
      File "C:\Program Files\Python39\lib\tkinter\__init__.py", line 1892, in __call__
      File "C:\Users\Александр\Desktop\Tester\SilkyArcTool\gui.py", line 316, in _choose_file
      File "C:\Program Files\Python39\lib\ntpath.py", line 703, in relpath
    ValueError: path is on mount 'C:', start on mount 'Y:'
    

    Simple fix is move archive to same drive as the tool

    opened by dobacco 2
Releases(1.1)
Owner
Tester
Tester Testerov Testerovich. "Test, test and test once more!"
Tester
Code for the paper "Language Models are Unsupervised Multitask Learners"

Status: Archive (code is provided as-is, no updates expected) gpt-2 Code and models from the paper "Language Models are Unsupervised Multitask Learner

OpenAI 16.1k Jan 08, 2023
A2T: Towards Improving Adversarial Training of NLP Models (EMNLP 2021 Findings)

A2T: Towards Improving Adversarial Training of NLP Models This is the source code for the EMNLP 2021 (Findings) paper "Towards Improving Adversarial T

QData 17 Oct 15, 2022
Finally decent dictionaries based on Wiktionary for your beloved eBook reader.

eBook Reader Dictionaries Finally, decent dictionaries based on Wiktionary for your beloved eBook reader. Dictionaries Catalan 🚧 Ελληνικά (help welco

Mickaël Schoentgen 163 Dec 31, 2022
🏆 • 5050 most frequent words in 109 languages

🏆 Most Common Words Multilingual 5000 most frequent words in 109 languages. Uses wordfrequency.info as a source. 🔗 License source code license data

14 Nov 24, 2022
Parrot is a paraphrase based utterance augmentation framework purpose built to accelerate training NLU models

Parrot is a paraphrase based utterance augmentation framework purpose built to accelerate training NLU models. A paraphrase framework is more than just a paraphrasing model.

Prithivida 681 Jan 01, 2023
HF's ML for Audio study group

Hugging Face Machine Learning for Audio Study Group Welcome to the ML for Audio Study Group. Through a series of presentations, paper reading and disc

Vaibhav Srivastav 110 Jan 01, 2023
AudioCLIP Extending CLIP to Image, Text and Audio

AudioCLIP Extending CLIP to Image, Text and Audio This repository contains implementation of the models described in the paper arXiv:2106.13043. This

458 Jan 02, 2023
Let Xiao Ai speakers control third-party devices

A stupid way to extend miot/xiaoai. Demo for Panasonic Bath Bully FV-RB20VL1 逆向 Panasonic Smart China,获得控制浴霸的请求信息(HTTP 请求),详见 apps/panasonic.py; 2. 通过

bin 14 Jul 07, 2022
Statistics and Mathematics for Machine Learning, Deep Learning , Deep NLP

Stat4ML Statistics and Mathematics for Machine Learning, Deep Learning , Deep NLP This is the first course from our trio courses: Statistics Foundatio

Omid Safarzadeh 83 Dec 29, 2022
Code for producing Japanese GPT-2 provided by rinna Co., Ltd.

japanese-gpt2 This repository provides the code for training Japanese GPT-2 models. This code has been used for producing japanese-gpt2-medium release

rinna Co.,Ltd. 491 Jan 07, 2023
Based on 125GB of data leaked from Twitch, you can see their monthly revenues from 2019-2021

Twitch Revenues Bu script'i kullanarak istediğiniz yayıncıların, Twitch'den sızdırılan 125 GB'lik veriye dayanarak, 2019-2021 arası aylık gelirlerini

4 Nov 11, 2021
Natural language computational chemistry command line interface.

nlcc Install pip install nlcc Must have Open-AI Codex key: export OPENAI_API_KEY=your key here then nlcc key bindings ctrl-w copy to clipboard (Note

Andrew White 37 Dec 14, 2022
Guide: Finetune GPT2-XL (1.5 Billion Parameters) and GPT-NEO (2.7 B) on a single 16 GB VRAM V100 Google Cloud instance with Huggingface Transformers using DeepSpeed

Guide: Finetune GPT2-XL (1.5 Billion Parameters) and GPT-NEO (2.7 Billion Parameters) on a single 16 GB VRAM V100 Google Cloud instance with Huggingfa

289 Jan 06, 2023
Twitter-NLP-Analysis - Twitter Natural Language Processing Analysis

Twitter-NLP-Analysis Business Problem I got last @turk_politika 3000 tweets with

Çağrı Karadeniz 7 Mar 12, 2022
Implementation of TTS with combination of Tacotron2 and HiFi-GAN

Tacotron2-HiFiGAN-master Implementation of TTS with combination of Tacotron2 and HiFi-GAN for Mandarin TTS. Inference In order to inference, we need t

SunLu Z 7 Nov 11, 2022
Score-Based Point Cloud Denoising (ICCV'21)

Score-Based Point Cloud Denoising (ICCV'21) [Paper] https://arxiv.org/abs/2107.10981 Installation Recommended Environment The code has been tested in

Shitong Luo 79 Dec 26, 2022
Artificial Conversational Entity for queries in Eulogio "Amang" Rodriguez Institute of Science and Technology (EARIST)

🤖 Coeus - EARIST A.C.E 💬 Coeus is an Artificial Conversational Entity for queries in Eulogio "Amang" Rodriguez Institute of Science and Technology,

Dids Irwyn Reyes 3 Oct 14, 2022
Syntax-aware Multi-spans Generation for Reading Comprehension (TASLP 2022)

SyntaxGen Syntax-aware Multi-spans Generation for Reading Comprehension (TASLP 2022) In this repo, we upload all the scripts for this work. Due to siz

Zhuosheng Zhang 3 Jun 13, 2022
Unifying Cross-Lingual Semantic Role Labeling with Heterogeneous Linguistic Resources (NAACL-2021).

Unifying Cross-Lingual Semantic Role Labeling with Heterogeneous Linguistic Resources Description This is the repository for the paper Unifying Cross-

Sapienza NLP group 16 Sep 09, 2022
:house_with_garden: Fast & easy transfer learning for NLP. Harvesting language models for the industry. Focus on Question Answering.

(Framework for Adapting Representation Models) What is it? FARM makes Transfer Learning with BERT & Co simple, fast and enterprise-ready. It's built u

deepset 1.6k Dec 27, 2022