AI Assistant for Building Reliable, High-performing and Fair Multilingual NLP Systems

Overview

LITMUS Predictor

LITMUS Predictor provides support for simulating performance in ~100 languages given training observations of the desired task-model. Each training observation specifies the finetuning-datasize + test-performance in different languages.

Further, the tool provides support for constructing a data-collection strategy to maximize performance in desired targets subject to different constraints.

Installation

pip install -U pip
pip install -r requirements.txt

Usage

litmus/litmus_mixing.py contains the implementation of the LITMUS Predictor which can be trained on observations of different task-model trainings.

usage: LITMUS Tool [-h] [--scores_file SCORES_FILE]
                   [--train_format {json,csv}] [--save_state SAVE_STATE]
                   [--load_state LOAD_STATE]
                   [--precomputed_features PRECOMPUTED_FEATURES]
                   [--pivot_features {none,all,data_only}] [--use_all_langs]
                   [--common_scaling] [--training_algorithm {xgboost,mlp}]
                   [--error_method {LOO,LOTO,split,kfold,manual_split}]
                   [--data_sizes DATA_SIZES] [--mode MODE [MODE ...]]
                   [--output_dir OUTPUT_DIR]
                   [--heatmap_targets HEATMAP_TARGETS]
                   [--suggestions_budget SUGGESTIONS_BUDGET]
                   [--suggestions_langbudget SUGGESTIONS_LANGBUDGET]
                   [--suggestions_targets SUGGESTIONS_TARGETS]
                   [--suggestions_weights SUGGESTIONS_WEIGHTS]
                   [--suggestions_pivots SUGGESTIONS_PIVOTS]
                   [--suggestions_augmentable SUGGESTIONS_AUGMENTABLE]
                   [--suggestions_grid {exponential,linear}]
                   [--suggestions_objective {avg,min}]
                   [--suggestions_minperf SUGGESTIONS_MINPERF]
                   [--suggestions_minlangperf SUGGESTIONS_MINLANGPERF]
                   [--suggestions_verbose]
                   {mbert,xlmr}

positional arguments:
  {mbert,xlmr}          name of model to use

optional arguments:
  -h, --help            show this help message and exit
  --scores_file SCORES_FILE
                        path of json file containing scores to train on
  --train_format {json,csv}
                        Format of the training data
  --save_state SAVE_STATE
                        Save state of training of model to pickle file
  --load_state LOAD_STATE
                        Load trained model from pickle file
  --precomputed_features PRECOMPUTED_FEATURES
                        Path to precomputed-features file.
  --pivot_features {none,all,data_only}
                        What features based on pivot langs to use
  --use_all_langs       Add features based on all langs the tool supports
                        (Needed for transfer)
  --common_scaling      Common min max scaling params that are pvt
                        dependent(data size, type overlap, distance)
  --training_algorithm {xgboost,mlp}
                        which regressor to use
  --error_method {LOO,LOTO,split,kfold,manual_split}

  --data_sizes DATA_SIZES
                        Pivot data-size configs (semi-colon separated configs,
                        each config itself being comma-separated key-value
                        pairs)

  --mode MODE [MODE ...]
                        Output modes (comma-separated). Choose from following:
                        {heatmap, suggestions}.
  --output_dir OUTPUT_DIR
                        Overrride output directory
  --heatmap_targets HEATMAP_TARGETS
                        Targets for heatmap. Overrides suggestions_targets
                        (which is used by deafult)

  --suggestions_budget SUGGESTIONS_BUDGET
                        Budget for finding suggestions of which languages to
                        add data for (0 to disable)
  --suggestions_langbudget SUGGESTIONS_LANGBUDGET
                        Language-specific budget for finding suggestions
                        (overrrides suggestions_budget for these langs, comma-
                        separated list of key:value pairs)
  --suggestions_targets SUGGESTIONS_TARGETS
                        Targets being considered (comma-separated)
  --suggestions_weights SUGGESTIONS_WEIGHTS
                        Target weights for avg perf objective (comma-separated
                        list of key:value pairs, default wt=1)
  --suggestions_pivots SUGGESTIONS_PIVOTS
                        Index of desired row in data_sizes
  --suggestions_augmentable SUGGESTIONS_AUGMENTABLE
                        Set of augmentable languages (comma-separated)
  --suggestions_grid {exponential,linear}
                        Search space grid to use for suggestions
  --suggestions_objective {avg,min}
                        Objective function to be used for finding suggestions
  --suggestions_minperf SUGGESTIONS_MINPERF
                        Minimum acceptable average performance across tgts
  --suggestions_minlangperf SUGGESTIONS_MINLANGPERF
                        Minimum acceptable performance for given tgts (comma-
                        separated list of key:value pairs)
  --suggestions_verbose
                        Verbose logging of search

Examples

From shell

python3 litmus_mixing.py xlmr --scores_file training_observations.json --common_scaling --error_method split --mode heatmap --data_sizes "en:1000,hi:1000;en:1000,ar:1000" --use_all_langs --heatmap_targets en,fr,de,hi,ar,ru

From external scripts

from litmus import litmus_mixing

data_file = "" # Location of train data file
args = litmus_mixing.parse_args([
    "xlmr", data_file,
    "--common_scaling",
    "--error_method", "kfold",
    "--training_algorithm", "xgboost"
])
res = litmus_mixing.litmus_main(args)

WebApp

frontend/ contains the code for hosting the tool as a webapp using Azure Functions. frontend/WebUx implements the client-side as a static website which interacts with a Azure Functions backend which internally runs the litmus/litmus_mixing.py script.

Instructions to self-host

  1. Create an Azure Functions resource on Azure.
  2. Install Azure CLI and Functions Core Tools
  3. cd into the frontend/ directory and deploy to azure functions using func azure functionapp publish .

Contributing

This project welcomes contributions and suggestions. Most contributions require you to agree to a Contributor License Agreement (CLA) declaring that you have the right to, and actually do, grant us the rights to use your contribution. For details, visit https://cla.opensource.microsoft.com.

When you submit a pull request, a CLA bot will automatically determine whether you need to provide a CLA and decorate the PR appropriately (e.g., status check, comment). Simply follow the instructions provided by the bot. You will only need to do this once across all repos using our CLA.

This project has adopted the Microsoft Open Source Code of Conduct. For more information see the Code of Conduct FAQ or contact [email protected] with any additional questions or comments.

Owner
Microsoft
Open source projects and samples from Microsoft
Microsoft
The Classical Language Toolkit

Notice: This Git branch (dev) contains the CLTK's upcoming major release (v. 1.0.0). See https://github.com/cltk/cltk/tree/master and https://docs.clt

Classical Language Toolkit 754 Jan 09, 2023
A music comments dataset, containing 39,051 comments for 27,384 songs.

Music Comments Dataset A music comments dataset, containing 39,051 comments for 27,384 songs. For academic research use only. Introduction This datase

Zhang Yixiao 2 Jan 10, 2022
A Pytorch implementation of "Splitter: Learning Node Representations that Capture Multiple Social Contexts" (WWW 2019).

Splitter ⠀⠀ A PyTorch implementation of Splitter: Learning Node Representations that Capture Multiple Social Contexts (WWW 2019). Abstract Recent inte

Benedek Rozemberczki 201 Nov 09, 2022
A natural language processing model for sequential sentence classification in medical abstracts.

NLP PubMed Medical Research Paper Abstract (Randomized Controlled Trial) A natural language processing model for sequential sentence classification in

Hemanth Chandran 1 Jan 17, 2022
SentimentArcs: a large ensemble of dozens of sentiment analysis models to analyze emotion in text over time

SentimentArcs - Emotion in Text An end-to-end pipeline based on Jupyter notebooks to detect, extract, process and anlayze emotion over time in text. E

jon_chun 14 Dec 19, 2022
This program do translate english words to portuguese

Python-Dictionary This program is used to translate english words to portuguese. Web-Scraping This program use BeautifulSoap to make web scraping, so

João Assalim 1 Oct 10, 2022
A retro text-to-speech bot for Discord

hawking A retro text-to-speech bot for Discord, designed to work with all of the stuff you might've seen in Moonbase Alpha, using the existing command

Nick Schorr 23 Dec 25, 2022
Ecommerce product title recognition package

revizor This package solves task of splitting product title string into components, like type, brand, model and article (or SKU or product code or you

Bureaucratic Labs 16 Mar 03, 2022
VMD Audio/Text control with natural language

This repository is a proof of principle for performing Molecular Dynamics analysis, in this case with the program VMD, via natural language commands.

Andrew White 13 Jun 09, 2022
TruthfulQA: Measuring How Models Imitate Human Falsehoods

TruthfulQA: Measuring How Models Imitate Human Falsehoods

69 Dec 25, 2022
Various Algorithms for Short Text Mining

Short Text Mining in Python Introduction This package shorttext is a Python package that facilitates supervised and unsupervised learning for short te

Kwan-Yuet 466 Dec 06, 2022
SDL: Synthetic Document Layout dataset

SDL is the project that synthesizes document images. It facilitates multiple-level labeling on document images and can generate in multiple languages.

Sơn Nguyễn 0 Oct 07, 2021
open-information-extraction-system, build open-knowledge-graph(SPO, subject-predicate-object) by pyltp(version==3.4.0)

中文开放信息抽取系统, open-information-extraction-system, build open-knowledge-graph(SPO, subject-predicate-object) by pyltp(version==3.4.0)

7 Nov 02, 2022
Treemap visualisation of Maya scene files

Ever wondered which nodes are responsible for that 600 mb+ Maya scene file? Features Fast, resizable UI Parsing at 50 mb/sec Dependency-free, single-f

Marcus Ottosson 76 Nov 12, 2022
PORORO: Platform Of neuRal mOdels for natuRal language prOcessing

PORORO: Platform Of neuRal mOdels for natuRal language prOcessing pororo performs Natural Language Processing and Speech-related tasks. It is easy to

Kakao Brain 1.2k Dec 21, 2022
Silero Models: pre-trained speech-to-text, text-to-speech models and benchmarks made embarrassingly simple

Silero Models: pre-trained speech-to-text, text-to-speech models and benchmarks made embarrassingly simple

Alexander Veysov 3.2k Dec 31, 2022
Chatbot for the Chatango messaging platform

BroiestBot The baddest bot in the game right now. Uses the ch.py framework for joining Chantango rooms and responding to user messages. Commands If a

Todd Birchard 3 Jan 17, 2022
ThinkTwice: A Two-Stage Method for Long-Text Machine Reading Comprehension

ThinkTwice ThinkTwice is a retriever-reader architecture for solving long-text machine reading comprehension. It is based on the paper: ThinkTwice: A

Walle 4 Aug 06, 2021
A Persian Image Captioning model based on Vision Encoder Decoder Models of the transformers🤗.

Persian-Image-Captioning We fine-tuning the Vision Encoder Decoder Model for the task of image captioning on the coco-flickr-farsi dataset. The implem

Hamtech-ai 15 Aug 25, 2022
Code for Findings at EMNLP 2021 paper: "Learn Continually, Generalize Rapidly: Lifelong Knowledge Accumulation for Few-shot Learning"

Learn Continually, Generalize Rapidly: Lifelong Knowledge Accumulation for Few-shot Learning This repo is for Findings at EMNLP 2021 paper: Learn Cont

INK Lab @ USC 6 Sep 02, 2022