This repository contains the code for "Generating Datasets with Pretrained Language Models".

Related tags

Text Data & NLPdino
Overview

Datasets from Instructions (DINO ๐Ÿฆ• )

This repository contains the code for Generating Datasets with Pretrained Language Models. The paper introduces a method called Datasets from Instructions (DINO ๐Ÿฆ• ) that enables pretrained language models to generate entire datasets from scratch.

๐Ÿ”ง Setup

All requirements for DINO can be found in requirements.txt. You can install all required packages in a new environment with pip install -r requirements.txt.

๐Ÿ’ฌ CLI Usage

Single Texts

To generate datasets for (single) text classification, you can use DINO as follows:

python3 dino.py \
 --output_dir <OUTPUT_DIR> \
 --task_file <TASK_FILE> \
 --num_entries_per_label <N>

where <OUTPUT_DIR> is a directory to which the generated dataset is written, <TASK_FILE> is a JSON file containing a task specification (see Task Specs), and <N> is the number of examples to generate per label. To get an overview of additional parameters, run python3 dino.py --help.

Text Pairs

To generate datasets for text pair classification, you first need a dataset of raw input texts (which you can also generate using DINO). You can then run

python3 dino.py \
 --output_dir <OUTPUT_DIR> \
 --task_file <TASK_FILE> \
 --input_file <INPUT_FILE> \
 --input_file_type <INPUT_FILE_TYPE> \
 --num_entries_per_input_and_label <N>

with <OUTPUT_DIR> and <TASK_FILE> as before. <INPUT_FILE> refers to the file containing raw input texts, <INPUT_FILE_TYPE> specifies its type, which should be one of

  • plain: for a plain text file with one input text per line
  • jsonl: for a dataset file generated by DINO in a previous step

and <N> is the number of examples to generate per label and input text.

๐Ÿ“‹ Task Specs

๐Ÿšจ Before you write custom task specifications, please note that this is still a very early release and we have not tested DINO on other tasks than semantic textual similarity yet. Please let us know if you see something strange. ๐Ÿšจ

To generate a dataset for a task, you need to provide a file containing a task specification, containing (among other things) the instructions given to the pretrained language model. A task specification is a single JSON object that looks like this:

{
  "task_name": "<TASK_NAME>",
  "labels": {
    "<LABEL_1>": {
      "instruction": "<INSTRUCTION_1>",
      "counter_labels": [<COUNTER_LABELS_1>]
    },

    ...,

    "<LABEL_n>": {
      "instruction": "<INSTRUCTION_n>",
      "counter_labels": [<COUNTER_LABELS_n>]
    }
  }
}

Here, <TASK_NAME> is the name for the task and <LABEL_1>, ..., <LABEL_n> are the task's labels. For each label <LABEL_i>, <INSTRUCTION_i> is the instruction provided to the language model for generating examples with label <LABEL_i> (see Writing Instructions). You can additionally specify a list of counter labels <COUNTER_LABELS_n> for each label. This tells the model to generate outputs that are not only likely given the current label, but also unlikely given all counter labels (see the paper for details).

Examples

You can find two examples of task specifications in /task_specs:

  • sts.json is a task specification for generating a semantic textual similarity dataset if a set of raw input texts is already given.
  • sts-x1.json is a task specification for generating a set of raw input texts. This set can then be used in a subsequent step to generate a full STS dataset using sts.json.

Writing Instructions

When writing instructions for a new task, you should consider the following things:

  • Always end your instructions with an (opening) quotation mark ("). This is required because it allows us to interpret the next quotation mark generated by the language model as a signal that it is done generating an example.
  • For good results, keep the instructions as short and simple as possible as this makes it easier for a pretrained language model to understand them.
  • If you are writing instructions for a text pair classification task, make sure that each instruction contains the placeholder <X1> exactly once. At this position, the provided raw input sentences are inserted during generation.

An example for an instruction that prompts the model to generate a positive review for a restaurant would be:

Task: Write a review for a really great restaurant.
Review: "

An example for an instruction that prompts the model to generate a sentence that has the same meaning as another given sentence would be:

Task: Write two sentences that mean the same thing.
Sentence 1: "<X1>"
Sentence 2: "

๐Ÿฆ• Generated DINOs

In this section, we will soon make publicly available a list of datasets that we have generated using DINO.

๐Ÿ“• Citation

If you make use of the code in this repository or of any DINO-based dataset, please cite the following paper:

@article{schick2020generating,
  title={Generating Datasets with Pretrained Language Models},
  author={Timo Schick and Hinrich Schรผtze},
  journal={Computing Research Repository},
  volume={arXiv:2104.07540},
  url={https://arxiv.org/abs/2104.07540},
  year={2021}
}
Owner
Timo Schick
NLP Researcher @ SulzerGmbH , PhD Student @ CIS, LMU Munich
Timo Schick
Paddlespeech Streaming ASR GUI

Paddlespeech-Streaming-ASR-GUI Introduction A paddlespeech Streaming ASR GUI. Us

Niek Zhen 3 Jan 05, 2022
Text editor on python to convert english text to malayalam(Romanization/Transiteration).

Manglish Text Editor This is a simple transiteration (romanization ) program which is used to convert manglish to malayalam (converts njaan to เดžเดพเตป ).

Merin Rose Tom 1 May 11, 2022
STonKGs is a Sophisticated Transformer that can be jointly trained on biomedical text and knowledge graphs

STonKGs STonKGs is a Sophisticated Transformer that can be jointly trained on biomedical text and knowledge graphs. This multimodal Transformer combin

STonKGs 27 Aug 11, 2022
Nested Named Entity Recognition for Chinese Biomedical Text

CBio-NAMER CBioNAMER (Nested nAMed Entity Recognition for Chinese Biomedical Text) is our method used in CBLUE (Chinese Biomedical Language Understand

8 Dec 25, 2022
Klexikon: A German Dataset for Joint Summarization and Simplification

Klexikon: A German Dataset for Joint Summarization and Simplification Dennis Aumiller and Michael Gertz Heidelberg University Under submission at LREC

Dennis Aumiller 8 Jan 03, 2023
Final Project Bootcamp Zero

The Quest (Pygame) Descripciรณn Este es el repositorio de cรณdigo The-Quest para el proyecto final Bootcamp Zero de KeepCoding. El juego consiste en la

Seven-z01 1 Mar 02, 2022
Python Implementation of ``Modeling the Influence of Verb Aspect on the Activation of Typical Event Locations with BERT'' (Findings of ACL: ACL 2021)

BERT-for-Surprisal Python Implementation of ``Modeling the Influence of Verb Aspect on the Activation of Typical Event Locations with BERT'' (Findings

7 Dec 05, 2022
Command Line Text-To-Speech using Google TTS

cli-tts Thanks to gTTS by @pndurette! This is an interactive command line text-to-speech tool using Google TTS. Just type text and the voice will be p

ReekyStive 3 Nov 11, 2022
Community and sentiment analysis based on tweets

The project has set itself the goal of analyzing the thoughts and interaction of Italian users through the social posts expressed through the Twitter platform on the day of the entry into force of th

3 Nov 17, 2022
์ˆญ์‹ค๋Œ€ํ•™๊ต ์ปดํ“จํ„ฐํ•™๋ถ€ ์ „๊ณต์ข…ํ•ฉ์„ค๊ณ„ํ”„๋กœ์ ํŠธ

โœจ ์‹œ๊ฐ์žฅ์• ์ธ์„ ์œ„ํ•œ ๋ฒ„์Šค๋„์ฐฉ ์•Œ๋ฆผ ์žฅ์น˜ โœจ ๐Ÿ‘€ ๊ฐœ์š” ํ˜„๋Œ€ ์‚ฌํšŒ์—์„œ ๋Œ€์ค‘๊ตํ†ต ์œ„์น˜ ์ •๋ณด๋ฅผ ์ด์šฉํ•˜์—ฌ ์‚ฌ๋žŒ๋“ค์ด ๊ฐ„๋‹จํ•˜๊ฒŒ ์ด์šฉํ•  ๋Œ€์ค‘๊ตํ†ต์˜ ์ •๋ณด๋ฅผ ์–ป๊ณ  ์‰ฝ๊ฒŒ ๋Œ€์ค‘๊ตํ†ต์„ ์ด์šฉํ•  ์ˆ˜ ์žˆ๋‹ค. ํ•ด๋‹น ์ •๋ณด๋Š” ๊ฐ์ข… ์–ดํ”Œ๋ฆฌ์ผ€์ด์…˜๊ณผ ๋Œ€์ค‘๊ตํ†ต ์ด์šฉ์‹œ์„ค์—์„œ ์œ„์น˜ ์ •๋ณด๋ฅผ ์ œ๊ณตํ•˜๊ณ  ์žˆ์ง€๋งŒ ์‹œ๊ฐ

taegyun 3 Jan 25, 2022
Seonghwan Kim 24 Sep 11, 2022
SpeechBrain is an open-source and all-in-one speech toolkit based on PyTorch.

The goal is to create a single, flexible, and user-friendly toolkit that can be used to easily develop state-of-the-art speech technologies, including systems for speech recognition, speaker recognit

SpeechBrain 5.1k Jan 09, 2023
PyTorch original implementation of Cross-lingual Language Model Pretraining.

XLM NEW: Added XLM-R model. PyTorch original implementation of Cross-lingual Language Model Pretraining. Includes: Monolingual language model pretrain

Facebook Research 2.7k Dec 27, 2022
Python package for Turkish Language.

PyTurkce Python package for Turkish Language. Documentation: https://pyturkce.readthedocs.io. Installation pip install pyturkce Usage from pyturkce im

Mert Cobanov 14 Oct 09, 2022
โš–๏ธ A Statutory Article Retrieval Dataset in French.

A Statutory Article Retrieval Dataset in French This repository contains the Belgian Statutory Article Retrieval Dataset (BSARD), as well as the code

Maastricht Law & Tech Lab 19 Nov 17, 2022
An algorithm that can solve the word puzzle Wordle with an optimal number of guesses on HARD mode.

WordleSolver An algorithm that can solve the word puzzle Wordle with an optimal number of guesses on HARD mode. How to use the program Copy this proje

Akil Selvan Rajendra Janarthanan 3 Mar 02, 2022
This is a NLP based project to extract effective date of the contract from their text files.

Date-Extraction-from-Contracts This is a NLP based project to extract effective date of the contract from their text files. Problem statement This is

Sambhav Garg 1 Jan 26, 2022
NLPretext packages in a unique library all the text preprocessing functions you need to ease your NLP project.

NLPretext packages in a unique library all the text preprocessing functions you need to ease your NLP project.

Artefact 114 Dec 15, 2022
ttslearn: Library for Pythonใงๅญฆใถ้Ÿณๅฃฐๅˆๆˆ (Text-to-speech with Python)

ttslearn: Library for Pythonใงๅญฆใถ้Ÿณๅฃฐๅˆๆˆ (Text-to-speech with Python) ๆ—ฅๆœฌ่ชžใฏไปฅไธ‹ใซ็ถšใใพใ™ (Japanese follows) English: This book is written in Japanese and primaril

Ryuichi Yamamoto 189 Dec 29, 2022
Problem: Given a nepali news find the category of the news

Classification of category of nepali news catorgory using different algorithms Problem: Multiclass Classification Approaches: TFIDF for vectorization

pudasainishushant 2 Jan 09, 2022