Mind the Trade-off: Debiasing NLU Models without Degrading the In-distribution Performance

Overview

Mind the Trade-off: Debiasing NLU Models without Degrading the In-distribution Performance

Abstract: Models for natural language understanding (NLU) tasks often rely on the idiosyncratic biases of the dataset, which make them brittle against test cases outside the training distribution. Recently, several proposed debiasing methods are shown to be very effective in improving out-of-distribution performance. However, their improvements come at the expense of performance drop when models are evaluated on the in-distribution data, which contain examples with higher diversity. This seemingly inevitable trade-off may not tell us much about the changes in the reasoning and understanding capabilities of the resulting models on broader types of examples beyond the small subset represented in the out-of-distribution data. In this paper, we address this trade-off by introducing a novel debiasing method, called confidence regularization, which discourage models from exploiting biases while enabling them to receive enough incentive to learn from all the training examples. We evaluate our method on three NLU tasks and show that, in contrast to its predecessors, it improves the performance on out-of-distribution datasets (e.g., 7pp gain on HANS dataset) while maintaining the original in-distribution accuracy.

The repository contains the code to reproduce our work in debiasing NLU models without in-distribution degradation. We provide 2 runs of experiment that are shown in our paper:

  1. Debias MNLI model from syntactic bias and evaluate on HANS as the out-of-distribution data.
  2. Debias MNLI model from hypothesis-only bias and evaluate on MNLI-hard sets as the out-of-distribution data.

Requirements

The code requires python >= 3.6 and pytorch >= 1.1.0.

Additional required dependencies can be found in requirements.txt. Install all requirements by running:

pip install -r requirements.txt

Data

Our experiments use MNLI dataset version provided by GLUE benchmark. Download the file from here, and unzip under the directory ./dataset Additionally download the following files here for evaluating on hard/easy splits of both MNLI dev and test sets. The dataset directory should be structured as the following:

└── dataset 
    └── MNLI
        ├── train.tsv
        ├── dev_matched.tsv
        ├── dev_mismatched.tsv
        ├── dev_mismatched.tsv
        ├── dev_matched_easy.tsv
        ├── dev_matched_hard.tsv
        ├── dev_mismatched_easy.tsv
        ├── dev_mismatched_hard.tsv
        ├── multinli_hard
        │   ├── multinli_0.9_test_matched_unlabeled_hard.jsonl
        │   └── multinli_0.9_test_mismatched_unlabeled_hard.jsonl
        ├── multinli_test
        │   ├── multinli_0.9_test_matched_unlabeled.jsonl
        │   └── multinli_0.9_test_mismatched_unlabeled.jsonl
        └── original

Running the experiments

For each evaluation setting, use the --mode and --which_bias arguments to set the appropriate loss function and the type of bias to mitigate (e.g, hans, hypo).

To reproduce our result on MNLI ⮕ HANS, run the following:

cd src/
CUDA_VISIBLE_DEVICES=6 python train_distill_bert.py \
    --output_dir ../checkpoints/hans/bert_confreg_lr5_epoch3_seed444 \
    --do_train --do_eval --mode smoothed_distill \
    --seed 444 --which_bias hans

For the MNLI ⮕ hard splits, run the following:

cd src/
CUDA_VISIBLE_DEVICES=10 python train_distill_bert.py \
    --output_dir ../checkpoints/hypo/bert_confreg_lr5_epoch3_seed111 \
    --do_train --do_eval --mode smoothed_distill \
    --seed 111 --which_bias hypo

Expected results

Results on the MNLI ⮕ HANS setting:

Mode Seed MNLI-m MNLI-mm HANS avg.
None 111 84.57 84.72 62.04
conf-reg 111 84.17 85.02 69.62

Results on the MNLI ⮕ Hard-splits setting:

Mode Seed MNLI-m MNLI-mm MNLI-m hard MNLI-mm hard
None 111 84.62 84.71 76.07 76.75
conf-reg 111 85.01 84.87 78.02 78.89

Contact

Contact person: Ajie Utama, [email protected]

https://www.ukp.tu-darmstadt.de/

Please reach out to us for further questions or if you encounter any issue. You can cite this work by the following:

@InProceedings{UtamaDebias2020,
  author    = {Utama, P. Ajie and Moosavi, Nafise Sadat and Gurevych, Iryna},
  title     = {Mind the Trade-off: Debiasing NLU Models without Degrading the In-distribution Performance},
  booktitle = {Proceedings of the 58th Conference of the Association for Computational Linguistics},
  month     = jul,
  year      = {2020},
  publisher = {Association for Computational Linguistics}
}

Acknowledgement

The code in this repository is build on the implementation of debiasing method by Clark et al. The original version can be found here

Owner
Ubiquitous Knowledge Processing Lab
Ubiquitous Knowledge Processing Lab
[Machine Learning Engineer Basic Guide] 부스트캠프 AI Tech - Product Serving 자료

Boostcamp-AI-Tech-Product-Serving 부스트캠프 AI Tech - Product Serving 자료 Repository 구조 part1(MLOps 개론, Model Serving, 머신러닝 프로젝트 라이프 사이클은 별도의 코드가 없으며, part

Sung Yun Byeon 269 Dec 21, 2022
a delightful machine learning tool that allows you to train, test and use models without writing code

igel A delightful machine learning tool that allows you to train/fit, test and use models without writing code Note I'm also working on a GUI desktop

Nidhal Baccouri 3k Jan 05, 2023
Library for machine learning stacking generalization.

stacked_generalization Implemented machine learning *stacking technic[1]* as handy library in Python. Feature weighted linear stacking is also availab

114 Jul 19, 2022
GeneralOCR is open source Optical Character Recognition based on PyTorch.

Introduction GeneralOCR is open source Optical Character Recognition based on PyTorch. It makes a fidelity and useful tool to implement SOTA models on

57 Dec 29, 2022
Translation-equivariant Image Quantizer for Bi-directional Image-Text Generation

Translation-equivariant Image Quantizer for Bi-directional Image-Text Generation Woncheol Shin1, Gyubok Lee1, Jiyoung Lee1, Joonseok Lee2,3, Edward Ch

Woncheol Shin 7 Sep 26, 2022
Audio Visual Emotion Recognition using TDA

Audio Visual Emotion Recognition using TDA RAVDESS database with two datasets analyzed: Video and Audio dataset: Audio-Dataset: https://www.kaggle.com

Combinatorial Image Analysis research group 3 May 11, 2022
A JAX implementation of Broaden Your Views for Self-Supervised Video Learning, or BraVe for short.

BraVe This is a JAX implementation of Broaden Your Views for Self-Supervised Video Learning, or BraVe for short. The model provided in this package wa

DeepMind 44 Nov 20, 2022
Pytorch implementation of DeepMind's differentiable neural computer paper.

DNC pytorch This is a Pytorch implementation of DeepMind's Differentiable Neural Computer (DNC) architecture introduced in their recent Nature paper:

Yuanpu Xie 91 Nov 21, 2022
基于AlphaPose的TensorRT加速

1. Requirements CUDA 11.1 TensorRT 7.2.2 Python 3.8.5 Cython PyTorch 1.8.1 torchvision 0.9.1 numpy 1.17.4 (numpy版本过高会出报错 this issue ) python-package s

52 Dec 06, 2022
QueryFuzz implements a metamorphic testing approach to test Datalog engines.

Datalog is a popular query language with applications in several domains. Like any complex piece of software, Datalog engines may contain bugs. The mo

34 Sep 10, 2022
Densely Connected Convolutional Networks, In CVPR 2017 (Best Paper Award).

Densely Connected Convolutional Networks (DenseNets) This repository contains the code for DenseNet introduced in the following paper Densely Connecte

Zhuang Liu 4.5k Jan 03, 2023
Code for "Learning Canonical Representations for Scene Graph to Image Generation", Herzig & Bar et al., ECCV2020

Learning Canonical Representations for Scene Graph to Image Generation (ECCV 2020) Roei Herzig*, Amir Bar*, Huijuan Xu, Gal Chechik, Trevor Darrell, A

roei_herzig 24 Jul 07, 2022
Image-to-image regression with uncertainty quantification in PyTorch

Image-to-image regression with uncertainty quantification in PyTorch. Take any dataset and train a model to regress images to images with rigorous, distribution-free uncertainty quantification.

Anastasios Angelopoulos 25 Dec 26, 2022
Pytorch implementation of "Geometrically Adaptive Dictionary Attack on Face Recognition" (WACV 2022)

Geometrically Adaptive Dictionary Attack on Face Recognition This is the Pytorch code of our paper "Geometrically Adaptive Dictionary Attack on Face R

6 Nov 21, 2022
(SIGIR2020) “Asymmetric Tri-training for Debiasing Missing-Not-At-Random Explicit Feedback’’

Asymmetric Tri-training for Debiasing Missing-Not-At-Random Explicit Feedback About This repository accompanies the real-world experiments conducted i

yuta-saito 19 Dec 01, 2022
This PyTorch package implements MoEBERT: from BERT to Mixture-of-Experts via Importance-Guided Adaptation (NAACL 2022).

MoEBERT This PyTorch package implements MoEBERT: from BERT to Mixture-of-Experts via Importance-Guided Adaptation (NAACL 2022). Installation Create an

Simiao Zuo 34 Dec 24, 2022
Code repository of the paper Neural circuit policies enabling auditable autonomy published in Nature Machine Intelligence

Neural Circuit Policies Enabling Auditable Autonomy Online access via SharedIt Neural Circuit Policies (NCPs) are designed sparse recurrent neural net

8 Jan 07, 2023
A little software to generate and save Julia or Mandelbrot's Fractals.

Julia-Mandelbrot-s-Fractals A little software to generate and save Julia or Mandelbrot's Fractals. Dependencies : Python 3.7 or more. (Also possible t

Olivier 0 Jul 09, 2022
Uni-Fold: Training your own deep protein-folding models

Uni-Fold: Training your own deep protein-folding models. This package provides an implementation of a trainable, Transformer-based deep protein foldin

DP Technology 187 Jan 04, 2023
The official implementation of You Only Compress Once: Towards Effective and Elastic BERT Compression via Exploit-Explore Stochastic Nature Gradient.

You Only Compress Once: Towards Effective and Elastic BERT Compression via Exploit-Explore Stochastic Nature Gradient (paper) @misc{zhang2021compress,

46 Dec 07, 2022