Implementation for the "Surface Reconstruction from 3D Line Segments" paper.

Overview

Surface Reconstruction from 3D Line Segments

Surface reconstruction from 3d line segments.
Langlois, P. A., Boulch, A., & Marlet, R.
In 2019 International Conference on 3D Vision (3DV) (pp. 553-563). IEEE. Project banner

Installation

  • [IMPORTANT NOTE] The plane arrangement is given as a Linux x64 binary. Please let us know if you need it for an other platform/compiler or if you have issues with it.

  • MOSEK 8 :

    • Download
    • Installation instructions.
    • Request a license (free for academics), and put it in ~/mosek/mosek.lic.
    • Set the mosek directory in the MOSEK_DIR environment variable such that <MOSEK_DIR>/8/tools/platform/linux64x86/src/fusion_cxx is a valid path:

    export MOSEK_DIR=/path/to/mosek

    • Make sure that the binaries are available at runtime:

    export LD_LIBRARY_PATH=$MOSEK_DIR/8/tools/platform/linux64x86/bin:$LD_LIBRARY_PATH

  • Clone this repository: git clone https://github.com/palanglois/line-surface-reconstruction.git

  • Go to the directory: cd line-surface-reconstruction

  • CGAL : Version 4.11 is required:

git clone https://github.com/CGAL/cgal.git external/cgal
cd external/cgal
git checkout releases/CGAL-4.11.3
mkdir build
cd build
cmake -DCMAKE_BUILD_TYPE=Release ..
make
cd ../../..
  • Make a build directory: mkdir build
  • Go to the build directory: cd build
  • Prepare the project with cmake: cmake -DCMAKE_BUILD_TYPE=Release ..
  • Compile the project: make

Examples

  • Out of the box examples are available in demo.sh

  • An example of a full reconstruction procedure from a simple set of images is available here

  • A benchmark example for an artificial textureless scene (with quantitative evaluation) is available here.

Programs

For every program, a simple documentation is available by running ./<program_name> -h

  • ransac_on_lines detects planes in a line set.
  • line_based_recons_param performs reconstruction out of a set of lines and detected planes. Computing the linear program is time consuming, but optimizing is way faster. Therefore, this program 1st computes the linear program and enters a loop in which you can manually set the optimization parameters in order to find the optimal ones for your reconstruction.
  • line_based_recons does the same as line_based_recons_param but the optimization parameters are set directly in the command line. Use it only if you know the optimal parameters for the reconstruction.
  • mesh_metrics provides evaluation metrics between two meshes.

Visualization

Reconstruction .ply files can be visualized directly in programs such as Meshlab or CloudCompare.

A simple OpenGL viewer is available to directly visualize the json line files.

Raw data

The raw data for Andalusian and HouseInterior is available here. For both examples, it includes the raw images as well as the full calibration in .nvm (VisualSFM) format.

For HouseInterior, a ground truth mesh is also available.

License

Apart from the code located in the external directory, all the code is provided under the GPL license.

The binaries and code provided in the external/PolyhedralComplex directory is provided under the Creative Commons CC-BY-SA license.

If these licenses do not suit your needs, please get in touch with us.

Citing this work

@inproceedings{langlois:hal-02344362,
TITLE = {{Surface Reconstruction from 3D Line Segments}},
AUTHOR = {Langlois, Pierre-Alain and Boulch, Alexandre and Marlet, Renaud},
URL = {https://hal.archives-ouvertes.fr/hal-02344362},
BOOKTITLE = {{2019 International Conference on 3D Vision (3DV)}},
ADDRESS = {Qu{\'e}bec City, Canada},
PUBLISHER = {{IEEE}},
PAGES = {553-563},
YEAR = {2019},
MONTH = Sep,
DOI = {10.1109/3DV.2019.00067},
} 
Hamiltonian Dynamics with Non-Newtonian Momentum for Rapid Sampling

Hamiltonian Dynamics with Non-Newtonian Momentum for Rapid Sampling Code for the paper: Greg Ver Steeg and Aram Galstyan. "Hamiltonian Dynamics with N

Greg Ver Steeg 25 Mar 14, 2022
Speech Emotion Recognition with Fusion of Acoustic- and Linguistic-Feature-Based Decisions

APSIPA-SER-with-A-and-T This code is the implementation of Speech Emotion Recognition (SER) with acoustic and linguistic features. The network model i

kenro515 3 Jan 04, 2023
Code for CVPR2021 paper "Robust Reflection Removal with Reflection-free Flash-only Cues"

Robust Reflection Removal with Reflection-free Flash-only Cues (RFC) Paper | To be released: Project Page | Video | Data Tensorflow implementation for

Chenyang LEI 162 Jan 05, 2023
Graduation Project

Gesture-Detection-and-Depth-Estimation This is my graduation project. (1) In this project, I use the YOLOv3 object detection model to detect gesture i

ChaosAT 1 Nov 23, 2021
Erpnext app for make employee salary on payroll entry based on one or more project with percentage for all project equal 100 %

Project Payroll this app for make payroll for employee based on projects like project on 30 % and project 2 70 % as account dimension it makes genral

Ibrahim Morghim 8 Jan 02, 2023
List some popular DeepFake models e.g. DeepFake, FaceSwap-MarekKowal, IPGAN, FaceShifter, FaceSwap-Nirkin, FSGAN, SimSwap, CihaNet, etc.

deepfake-models List some popular DeepFake models e.g. DeepFake, CihaNet, SimSwap, FaceSwap-MarekKowal, IPGAN, FaceShifter, FaceSwap-Nirkin, FSGAN, Si

Mingcan Xiang 100 Dec 17, 2022
Simple embedding based text classifier inspired by fastText, implemented in tensorflow

FastText in Tensorflow This project is based on the ideas in Facebook's FastText but implemented in Tensorflow. However, it is not an exact replica of

Alan Patterson 306 Dec 02, 2022
Official PyTorch implementation of "Physics-aware Difference Graph Networks for Sparsely-Observed Dynamics".

Physics-aware Difference Graph Networks for Sparsely-Observed Dynamics This repository is the official PyTorch implementation of "Physics-aware Differ

USC-Melady 46 Nov 20, 2022
QICK: Quantum Instrumentation Control Kit

QICK: Quantum Instrumentation Control Kit The QICK is a kit of firmware and software to use the Xilinx RFSoC to control quantum systems. It consists o

81 Dec 15, 2022
Multi-Objective Reinforced Active Learning

Multi-Objective Reinforced Active Learning Dependencies wandb tqdm pytorch = 1.7.0 numpy = 1.20.0 scipy = 1.1.0 pycolab == 1.2 Weights and Biases O

Markus Peschl 6 Nov 19, 2022
An Unsupervised Detection Framework for Chinese Jargons in the Darknet

An Unsupervised Detection Framework for Chinese Jargons in the Darknet This repo is the Python 3 implementation of 《An Unsupervised Detection Framewor

7 Nov 08, 2022
Implementation of PersonaGPT Dialog Model

PersonaGPT An open-domain conversational agent with many personalities PersonaGPT is an open-domain conversational agent cpable of decoding personaliz

ILLIDAN Lab 42 Jan 01, 2023
Optimize Trading Strategies Using Freqtrade

Optimize trading strategy using Freqtrade Short demo on building, testing and optimizing a trading strategy using Freqtrade. The DevBootstrap YouTube

DevBootstrap 139 Jan 01, 2023
EfficientDet (Scalable and Efficient Object Detection) implementation in Keras and Tensorflow

EfficientDet This is an implementation of EfficientDet for object detection on Keras and Tensorflow. The project is based on the official implementati

1.3k Dec 19, 2022
DeepStruc is a Conditional Variational Autoencoder which can predict the mono-metallic nanoparticle from a Pair Distribution Function.

ChemRxiv | [Paper] XXX DeepStruc Welcome to DeepStruc, a Deep Generative Model (DGM) that learns the relation between PDF and atomic structure and the

Emil Thyge Skaaning Kjær 13 Aug 01, 2022
Implementation of "Distribution Alignment: A Unified Framework for Long-tail Visual Recognition"(CVPR 2021)

Implementation of "Distribution Alignment: A Unified Framework for Long-tail Visual Recognition"(CVPR 2021)

105 Nov 07, 2022
This repository contains code released by Google Research.

This repository contains code released by Google Research.

Google Research 26.6k Dec 31, 2022
Molecular Sets (MOSES): A benchmarking platform for molecular generation models

Molecular Sets (MOSES): A benchmarking platform for molecular generation models Deep generative models are rapidly becoming popular for the discovery

Neelesh C A 3 Oct 14, 2022
Code for NAACL 2021 full paper "Efficient Attentions for Long Document Summarization"

LongDocSum Code for NAACL 2021 paper "Efficient Attentions for Long Document Summarization" This repository contains data and models needed to reprodu

56 Jan 02, 2023
Human pose estimation from video plays a critical role in various applications such as quantifying physical exercises, sign language recognition, and full-body gesture control.

Pose Detection Project Description: Human pose estimation from video plays a critical role in various applications such as quantifying physical exerci

Hassan Shahzad 2 Jan 17, 2022