This project is based on RIFE and aims to make RIFE more practical for users by adding various features and design new models

Overview

Practical-RIFE

This project is based on RIFE and aims to make RIFE more practical for users by adding various features and design new models. Because improving the PSNR index is not compatible with subjective effects, we hope this part of work and our academic research are independent of each other. To reduce development difficulty, this project is for engineers and developers. For users, we recommend the following softwares: Squirrel-RIFE(中文软件) | Waifu2x-Extension-GUI | Flowframes | RIFE-ncnn-vulkan | RIFE-App(Paid) | Autodesk Flame | SVP |

For business cooperation, please contact my email.

16X interpolation results from two input images:

Demo Demo

Usage

Model List

v3.6 | Google Drive | 百度网盘, 密码:75nd

v3.5 | Google Drive | 百度网盘, 密码:1rb7

Update log

Installation

git clone [email protected]:hzwer/Practical-RIFE.git
cd Practical-RIFE
pip3 install -r requirements.txt

Download a model from the model list and put *.py and flownet.pkl on train_log/

Run

Video Frame Interpolation

You can use our demo video or your video.

python3 inference_video.py --exp=1 --video=video.mp4 

(generate video_2X_xxfps.mp4)

python3 inference_video.py --exp=2 --video=video.mp4

(for 4X interpolation)

python3 inference_video.py --exp=1 --video=video.mp4 --scale=0.5

(If your video has high resolution, such as 4K, we recommend set --scale=0.5 (default 1.0))

python3 inference_video.py --exp=2 --img=input/

(to read video from pngs, like input/0.png ... input/612.png, ensure that the png names are numbers)

python3 inference_video.py --exp=2 --video=video.mp4 --fps=60

(add slomo effect, the audio will be removed)

The warning info, 'Warning: Your video has *** static frames, it may change the duration of the generated video.' means that your video has changed the frame rate by adding static frames. It is common if you have processed 25FPS video to 30FPS.

Collection

2d Animation DAIN-App vs RIFE-App | Chika Dance | 御坂大哥想让我表白 - 魔女之旅 | ablyh - 超电磁炮 超电磁炮.b | 赫萝与罗伦斯的旅途 - 绫波丽 | 花儿不哭 - 乐正绫 |

没有鼠鼠的雏子Official - 千恋万花 | 晨曦光晖 - 从零开始的异世界生活 | 琴乃乃 - 天才麻将少女 |

3d Animation 没有鼠鼠的雏子Official - 原神 | 今天我练出腹肌了吗 - 最终幻想 仙剑奇侠传 | 娜不列颠 - 冰雪奇缘 | 索尼克释放:刺猬之夜

MV and Film Navetek - 邓丽君 | 生米阿怪 - 周深 | EzioAuditoreDFirenZe - 中森明菜 | Dragostea Din Tei | Life in a Day 2020 |

MMD 深邃黑暗の银鳕鱼 - 镜音铃 fufu fufu.b | Abism0 - 弱音 |

Report Bad Cases

Please share your original video clip with us via Github issue and Google Drive. We may add it to our test set so that it is likely to be improved in later versions. It will be beneficial to attach a screenshot of the model's effect on the issue.

Model training

Since we are in the research stage of engineering tricks, and our work and paper have not been authorized for patents nor published, we are sorry that we cannot provide users with training scripts. If you are interested in academic exploration, please refer to our academic research project RIFE.

To-do List

Multi-frame input of the model

Frame interpolation at any time location

Eliminate artifacts as much as possible

Make the model applicable under any resolution input

Provide models with lower calculation consumption

Citation

@article{huang2020rife,
  title={RIFE: Real-Time Intermediate Flow Estimation for Video Frame Interpolation},
  author={Huang, Zhewei and Zhang, Tianyuan and Heng, Wen and Shi, Boxin and Zhou, Shuchang},
  journal={arXiv preprint arXiv:2011.06294},
  year={2020}
}

Reference

Optical Flow: ARFlow pytorch-liteflownet RAFT pytorch-PWCNet

Video Interpolation: DVF TOflow SepConv DAIN CAIN MEMC-Net SoftSplat BMBC EDSC EQVI RIFE

Owner
hzwer
hzwer
A numpy-based implementation of RANSAC for fundamental matrix and homography estimation. The degeneracy updating and local optimization components are included and optional.

Description A numpy-based implementation of RANSAC for fundamental matrix and homography estimation. The degeneracy updating and local optimization co

AoxiangFan 9 Nov 10, 2022
A Neural Net Training Interface on TensorFlow, with focus on speed + flexibility

Tensorpack is a neural network training interface based on TensorFlow. Features: It's Yet Another TF high-level API, with speed, and flexibility built

Tensorpack 6.2k Jan 09, 2023
Official implementation of "StyleCariGAN: Caricature Generation via StyleGAN Feature Map Modulation" (SIGGRAPH 2021)

StyleCariGAN in PyTorch Official implementation of StyleCariGAN:Caricature Generation via StyleGAN Feature Map Modulation in PyTorch Requirements PyTo

PeterZhouSZ 49 Oct 31, 2022
An attempt at the implementation of GLOM, Geoffrey Hinton's paper for emergent part-whole hierarchies from data

GLOM TensorFlow This Python package attempts to implement GLOM in TensorFlow, which allows advances made by several different groups transformers, neu

Rishit Dagli 32 Feb 21, 2022
Hi Guys, here I am providing examples, which will help you in Lerarning Python

LearningPython Hi guys, here I am trying to include as many practice examples of Python Language, as i Myself learn, and hope these will help you in t

4 Feb 03, 2022
Pytorch implementation of MaskGIT: Masked Generative Image Transformer

Pytorch implementation of MaskGIT: Masked Generative Image Transformer

Dominic Rampas 247 Dec 16, 2022
Animation of solving the traveling salesman problem to optimality using mixed-integer programming and iteratively eliminating sub tours

tsp-streamlit Animation of solving the traveling salesman problem to optimality using mixed-integer programming and iteratively eliminating sub tours.

4 Nov 05, 2022
Multiview Neural Surface Reconstruction by Disentangling Geometry and Appearance

Multiview Neural Surface Reconstruction by Disentangling Geometry and Appearance Project Page | Paper | Data This repository contains an implementatio

Lior Yariv 521 Dec 30, 2022
Encoding Causal Macrovariables

Encoding Causal Macrovariables Data Natural climate data ('El Nino') Self-generated data ('Simulated') Experiments Detecting macrovariables through th

Benedikt Höltgen 3 Jul 31, 2022
Google Brain - Ventilator Pressure Prediction

Google Brain - Ventilator Pressure Prediction https://www.kaggle.com/c/ventilator-pressure-prediction The ventilator data used in this competition was

Samuele Cucchi 1 Feb 11, 2022
Official implementation for paper Knowledge Bridging for Empathetic Dialogue Generation (AAAI 2021).

Knowledge Bridging for Empathetic Dialogue Generation This is the official implementation for paper Knowledge Bridging for Empathetic Dialogue Generat

Qintong Li 50 Dec 20, 2022
Shape Matching of Real 3D Object Data to Synthetic 3D CADs (3DV project @ ETHZ)

Real2CAD-3DV Shape Matching of Real 3D Object Data to Synthetic 3D CADs (3DV project @ ETHZ) Group Member: Yue Pan, Yuanwen Yue, Bingxin Ke, Yujie He

24 Jun 22, 2022
Official code for "Stereo Waterdrop Removal with Row-wise Dilated Attention (IROS2021)"

Stereo-Waterdrop-Removal-with-Row-wise-Dilated-Attention This repository includes official codes for "Stereo Waterdrop Removal with Row-wise Dilated A

29 Oct 01, 2022
ROCKET: Exceptionally fast and accurate time series classification using random convolutional kernels

ROCKET + MINIROCKET ROCKET: Exceptionally fast and accurate time series classification using random convolutional kernels. Data Mining and Knowledge D

298 Dec 26, 2022
Python package for visualizing the loss landscape of parameterized quantum algorithms.

orqviz A Python package for easily visualizing the loss landscape of Variational Quantum Algorithms by Zapata Computing Inc. orqviz provides a collect

Zapata Computing, Inc. 75 Dec 30, 2022
[ICLR 2022] Contact Points Discovery for Soft-Body Manipulations with Differentiable Physics

CPDeform Code and data for paper Contact Points Discovery for Soft-Body Manipulations with Differentiable Physics at ICLR 2022 (Spotlight). @InProceed

(Lester) Sizhe Li 29 Nov 29, 2022
A Pytorch implementation of "LegoNet: Efficient Convolutional Neural Networks with Lego Filters" (ICML 2019).

LegoNet This code is the implementation of ICML2019 paper LegoNet: Efficient Convolutional Neural Networks with Lego Filters Run python train.py You c

YangZhaohui 140 Sep 26, 2022
Pytorch implementation of “Recursive Non-Autoregressive Graph-to-Graph Transformer for Dependency Parsing with Iterative Refinement”

Graph-to-Graph Transformers Self-attention models, such as Transformer, have been hugely successful in a wide range of natural language processing (NL

Idiap Research Institute 40 Aug 14, 2022
Team Enigma at ArgMining 2021 Shared Task: Leveraging Pretrained Language Models for Key Point Matching

Team Enigma at ArgMining 2021 Shared Task: Leveraging Pretrained Language Models for Key Point Matching This is our attempt of the shared task on Quan

Manav Nitin Kapadnis 12 Jul 08, 2022
We envision models that are pre-trained on a vast range of domain-relevant tasks to become key for molecule property prediction

We envision models that are pre-trained on a vast range of domain-relevant tasks to become key for molecule property prediction. This repository aims to give easy access to state-of-the-art pre-train

GMUM 90 Jan 08, 2023