Open-L2O: A Comprehensive and Reproducible Benchmark for Learning to Optimize Algorithms

Overview

Open-L2O

This repository establishes the first comprehensive benchmark efforts of existing learning to optimize (L2O) approaches on a number of problems and settings. We release our software implementation and data as the Open-L2O package, for reproducible research and fair benchmarking in the L2O field. [Paper]

License: MIT

Overview

What is learning to optimize (L2O)?

L2O (Learning to optimize) aims to replace manually designed analytic optimization algorithms (SGD, RMSProp, Adam, etc.) with learned update rules.

How does L2O work?

L2O serves as functions that can be fit from data. L2O gains experience from training optimization tasks in a principled and automatic way.

What can L2O do for you?

L2O is particularly suitable for solving a certain type of optimization over a specific distribution of data repeatedly. In comparison to classic methods, L2O is shown to find higher-quality solutions and/or with much faster convergence speed for many problems.

Open questions for research?

  • There are significant theoretical and practicality gaps between manually designed optimizers and existing L2O models.

Main Results

Learning to optimize sparse recovery

Learning to optimize Lasso functions

Learning to optimize non-convex Rastrigin functions

Learning to optimize neural networks

Supported Model-base Learnable Optimizers

All codes are available at here.

  1. LISTA (feed-forward form) from Learning fast approximations of sparse coding [Paper]
  2. LISTA-CP from Theoretical Linear Convergence of Unfolded ISTA and its Practical Weights and Thresholds [Paper]
  3. LISTA-CPSS from Theoretical Linear Convergence of Unfolded ISTA and its Practical Weights and Thresholds [Paper]
  4. LFISTA from Understanding Trainable Sparse Coding via Matrix Factorization [Paper]
  5. LAMP from AMP-Inspired Deep Networks for Sparse Linear Inverse Problems [Paper]
  6. ALISTA from ALISTA: Analytic Weights Are As Good As Learned Weights in LISTA [Paper]
  7. GLISTA from Sparse Coding with Gated Learned ISTA [Paper]

Supported Model-free Learnable Optimizers

  1. L2O-DM from Learning to learn by gradient descent by gradient descent [Paper] [Code]
  2. L2O-RNNProp Learning Gradient Descent: Better Generalization and Longer Horizons from [Paper] [Code]
  3. L2O-Scale from Learned Optimizers that Scale and Generalize [Paper] [Code]
  4. L2O-enhanced from Training Stronger Baselines for Learning to Optimize [Paper] [Code]
  5. L2O-Swarm from Learning to Optimize in Swarms [Paper] [Code]
  6. L2O-Jacobian from HALO: Hardware-Aware Learning to Optimize [Paper] [Code]
  7. L2O-Minmax from Learning A Minimax Optimizer: A Pilot Study [Paper] [Code]

Supported Optimizees

Convex Functions:

  • Quadratic
  • Lasso

Non-convex Functions:

  • Rastrigin

Minmax Functions:

  • Saddle
  • Rotated Saddle
  • Seesaw
  • Matrix Game

Neural Networks:

  • MLPs on MNIST
  • ConvNets on MNIST and CIFAR-10
  • LeNet
  • NAS searched archtectures

Other Resources

  • This is a Pytorch implementation of L2O-DM. [Code]
  • This is the original L2O-Swarm repository. [Code]
  • This is the original L2O-Jacobian repository. [Code]

Future Works

  • TF2.0 Implementated toolbox v2 with a unified framework and lib dependency.

Cite

@misc{chen2021learning,
      title={Learning to Optimize: A Primer and A Benchmark}, 
      author={Tianlong Chen and Xiaohan Chen and Wuyang Chen and Howard Heaton and Jialin Liu and Zhangyang Wang and Wotao Yin},
      year={2021},
      eprint={2103.12828},
      archivePrefix={arXiv},
      primaryClass={math.OC}
}
Owner
VITA
Visual Informatics Group @ University of Texas at Austin
VITA
This is the code for "HyperNeRF: A Higher-Dimensional Representation for Topologically Varying Neural Radiance Fields".

HyperNeRF: A Higher-Dimensional Representation for Topologically Varying Neural Radiance Fields This is the code for "HyperNeRF: A Higher-Dimensional

Google 702 Jan 02, 2023
On Size-Oriented Long-Tailed Graph Classification of Graph Neural Networks

On Size-Oriented Long-Tailed Graph Classification of Graph Neural Networks We provide the code (in PyTorch) and datasets for our paper "On Size-Orient

Zemin Liu 4 Jun 18, 2022
Official implementation of CVPR2020 paper "Deep Generative Model for Robust Imbalance Classification"

Deep Generative Model for Robust Imbalance Classification Deep Generative Model for Robust Imbalance Classification Xinyue Wang, Yilin Lyu, Liping Jin

9 Nov 01, 2022
A cross-lingual COVID-19 fake news dataset

CrossFake An English-Chinese COVID-19 fake&real news dataset from the ICDMW 2021 paper below: Cross-lingual COVID-19 Fake News Detection. Jiangshu Du,

Yingtong Dou 11 Dec 01, 2022
Unified Interface for Constructing and Managing Workflows on different workflow engines, such as Argo Workflows, Tekton Pipelines, and Apache Airflow.

Couler What is Couler? Couler aims to provide a unified interface for constructing and managing workflows on different workflow engines, such as Argo

Couler Project 781 Jan 03, 2023
Source code for The Power of Many: A Physarum Swarm Steiner Tree Algorithm

Physarum-Swarm-Steiner-Algo Source code for The Power of Many: A Physarum Steiner Tree Algorithm Code implements ideas from the following papers: Sher

Sheryl Hsu 2 Mar 28, 2022
A unified 3D Transformer Pipeline for visual synthesis

Overview This is the official repo for the paper: NÜWA: Visual Synthesis Pre-training for Neural visUal World creAtion. NÜWA is a unified multimodal p

Microsoft 2.6k Jan 06, 2023
[ICCV'21] Learning Conditional Knowledge Distillation for Degraded-Reference Image Quality Assessment

CKDN The official implementation of the ICCV2021 paper "Learning Conditional Knowledge Distillation for Degraded-Reference Image Quality Assessment" O

Multimedia Research 50 Dec 13, 2022
Inhomogeneous Social Recommendation with Hypergraph Convolutional Networks

Inhomogeneous Social Recommendation with Hypergraph Convolutional Networks This is our Pytorch implementation for the paper: Zirui Zhu, Chen Gao, Xu C

Zirui Zhu 3 Dec 30, 2022
Finding an Unsupervised Image Segmenter in each of your Deep Generative Models

Finding an Unsupervised Image Segmenter in each of your Deep Generative Models Description Recent research has shown that numerous human-interpretable

Luke Melas-Kyriazi 61 Oct 17, 2022
Time-Optimal Planning for Quadrotor Waypoint Flight

Time-Optimal Planning for Quadrotor Waypoint Flight This is an example implementation of the paper "Time-Optimal Planning for Quadrotor Waypoint Fligh

Robotics and Perception Group 38 Dec 02, 2022
Project page for End-to-end Recovery of Human Shape and Pose

End-to-end Recovery of Human Shape and Pose Angjoo Kanazawa, Michael J. Black, David W. Jacobs, Jitendra Malik CVPR 2018 Project Page Requirements Pyt

1.4k Dec 29, 2022
Fuzzer for Linux Kernel Drivers

difuze: Fuzzer for Linux Kernel Drivers This repo contains all the sources (including setup scripts), you need to get difuze up and running. Tested on

seclab 344 Dec 27, 2022
CrossNorm and SelfNorm for Generalization under Distribution Shifts (ICCV 2021)

CrossNorm (CN) and SelfNorm (SN) (Accepted at ICCV 2021) This is the official PyTorch implementation of our CNSN paper, in which we propose CrossNorm

100 Dec 28, 2022
Improving Transferability of Representations via Augmentation-Aware Self-Supervision

Improving Transferability of Representations via Augmentation-Aware Self-Supervision Accepted to NeurIPS 2021 TL;DR: Learning augmentation-aware infor

hankook 38 Sep 16, 2022
Identify the emotion of multiple speakers in an Audio Segment

MevonAI - Speech Emotion Recognition Identify the emotion of multiple speakers in a Audio Segment Report Bug · Request Feature Try the Demo Here Table

Suyash More 110 Dec 03, 2022
Supervised forecasting of sequential data in Python.

Supervised forecasting of sequential data in Python. Intro Supervised forecasting is the machine learning task of making predictions for sequential da

The Alan Turing Institute 54 Nov 15, 2022
Implement some metaheuristics and cost functions

Metaheuristics This repot implement some metaheuristics and cost functions. Metaheuristics JAYA Implement Jaya optimizer without constraints. Cost fun

Adri1G 1 Mar 23, 2022
This project is based on RIFE and aims to make RIFE more practical for users by adding various features and design new models

CPM 项目描述 CPM(Chinese Pretrained Models)模型是北京智源人工智能研究院和清华大学发布的中文大规模预训练模型。官方发布了三种规模的模型,参数量分别为109M、334M、2.6B,用户需申请与通过审核,方可下载。 由于原项目需要考虑大模型的训练和使用,需要安装较为复杂

hzwer 190 Jan 08, 2023
JFB: Jacobian-Free Backpropagation for Implicit Models

JFB: Jacobian-Free Backpropagation for Implicit Models

Typal Research 28 Dec 11, 2022