[Preprint] "Chasing Sparsity in Vision Transformers: An End-to-End Exploration" by Tianlong Chen, Yu Cheng, Zhe Gan, Lu Yuan, Lei Zhang, Zhangyang Wang

Overview

Chasing Sparsity in Vision Transformers: An End-to-End Exploration

License: MIT

Codes for [Preprint] Chasing Sparsity in Vision Transformers: An End-to-End Exploration.

Tianlong Chen, Yu Cheng, Zhe Gan, Lu Yuan, Lei Zhang, Zhangyang Wang

Overall Results

Extensive results on ImageNet with diverse ViT backbones validate the effectiveness of our proposals which obtain significantly reduced computational cost and almost unimpaired generalization. Perhaps most surprisingly, we find that the proposed sparse (co-)training can even improve the ViT accuracy rather than compromising it, making sparsity a tantalizing “free lunch”. For example, our sparsified DeiT-Small at (5%, 50%) sparsity for (data, architecture), improves 0.28% top-1 accuracy, and meanwhile enjoys 49.32% FLOPs and 4.40% running time savings.

Proposed Framework of SViTE

Implementations of SViTE

Set Environment

conda create -n vit python=3.6

pip install torch==1.7.1+cu101 torchvision==0.8.2+cu101 torchaudio==0.7.2 -f https://download.pytorch.org/whl/torch_stable.html

pip install tqdm scipy timm

git clone https://github.com/NVIDIA/apex

cd apex

pip install -v --disable-pip-version-check --no-cache-dir --global-option="--cpp_ext" --global-option="--cuda_ext" ./

pip install -v --disable-pip-version-check --no-cache-dir ./

Cmd

Command for unstructured sparsity, i.e., SViTE.

  • SViTE-Small
bash cmd/ vm/0426/vm1.sh 0,1,2,3,4,5,6,7

Details

CUDA_VISIBLE_DEVICES=$1 \
python -m torch.distributed.launch \
    --nproc_per_node=8 \
    --use_env main.py \
    --model deit_small_patch16_224 \
    --epochs 600 \
    --batch-size 64 \
    --data-path ../../imagenet \
    --output_dir ./small_dst_uns_0426_vm1 \
    --dist_url tcp://127.0.0.1:23305 \
    --sparse_init fixed_ERK \
    --density 0.4 \
    --update_frequency 15000 \
    --growth gradient \
    --death magnitude \
    --redistribution none
  • SViTE-Base
bash cmd/ vm/0426/vm3.sh 0,1,2,3,4,5,6,7

Details

CUDA_VISIBLE_DEVICES=$1 \
python -m torch.distributed.launch \
    --nproc_per_node=8 \
    --use_env main.py \
    --model deit_base_patch16_224 \
    --epochs 600 \
    --batch-size 128 \
    --data-path ../../imagenet \
    --output_dir ./base_dst_uns_0426_vm3 \
    --dist_url tcp://127.0.0.1:23305 \
    --sparse_init fixed_ERK \
    --density 0.4 \
    --update_frequency 7000 \
    --growth gradient \
    --death magnitude \
    --redistribution none

Remark. More commands can be found under the "cmd" folder.

Command for structured sparsity is comming soon!

Pre-traiend SViTE Models.

  1. SViTE-Base with 40% structural sparsity ACC=82.22

https://www.dropbox.com/s/ix7mmduvf0wlc4b/deit_base_structure_40_82.22.pth?dl=0

  1. SViTE-Base with 40% unstructured sparsity ACC=81.56

https://www.dropbox.com/s/vltm4piwn9cwsop/deit_base_unstructure_40_81.56.pth?dl=0

  1. SViTE-Small with 50% unstructued sparsity and 5% data sparisity ACC=80.18

https://www.dropbox.com/s/kofps21g857wlbt/deit_small_unstructure_50_sparseinput_0.95_80.18.pth?dl=0

  1. SViTE-Small with 50% unstructured sparsity and 10% data sparsity ACC=79.91

https://www.dropbox.com/s/bdhpc6nfrwahcuc/deit_small_unstructure_50_sparseinput_0.90_79.91.pth?dl=0

Citation

@misc{chen2021chasing,
      title={Chasing Sparsity in Vision Transformers:An End-to-End Exploration}, 
      author={Tianlong Chen and Yu Cheng and Zhe Gan and Lu Yuan and Lei Zhang and Zhangyang Wang},
      year={2021},
      eprint={2106.04533},
      archivePrefix={arXiv},
      primaryClass={cs.CV}
}

Acknowledge Related Repos

ViT : https://github.com/jeonsworld/ViT-pytorch

ViT : https://github.com/google-research/vision_transformer

Rig : https://github.com/google-research/rigl

DeiT: https://github.com/facebookresearch/deit

Owner
VITA
Visual Informatics Group @ University of Texas at Austin
VITA
Garbage classification using structure data.

垃圾分类模型使用说明 1.包含以下数据文件 文件 描述 data/MaterialMapping.csv 物体以及其归类的信息 data/TestRecords 光谱原始测试数据 CSV 文件 data/TestRecordDesc.zip CSV 文件描述文件 data/Boundaries.cs

wenqi 1 Dec 10, 2021
JASS: Japanese-specific Sequence to Sequence Pre-training for Neural Machine Translation

JASS: Japanese-specific Sequence to Sequence Pre-training for Neural Machine Translation This the repository for this paper. Find extensions of this w

Zhuoyuan Mao 14 Oct 26, 2022
Official code for CVPR2022 paper: Depth-Aware Generative Adversarial Network for Talking Head Video Generation

📖 Depth-Aware Generative Adversarial Network for Talking Head Video Generation (CVPR 2022) 🔥 If DaGAN is helpful in your photos/projects, please hel

Fa-Ting Hong 503 Jan 04, 2023
Official implement of Paper:A deeply supervised image fusion network for change detection in high resolution bi-temporal remote sening images

A deeply supervised image fusion network for change detection in high resolution bi-temporal remote sensing images 深度监督影像融合网络DSIFN用于高分辨率双时相遥感影像变化检测 Of

Chenxiao Zhang 135 Dec 19, 2022
Make Watson Assistant send messages to your Discord Server

Make Watson Assistant send messages to your Discord Server Prerequisites Sign up for an IBM Cloud account. Fill in the required information and press

1 Jan 10, 2022
Computer vision - fun segmentation experience using classic and deep tools :)

Computer_Vision_Segmentation_Fun Segmentation of Images and Video. Tools: pytorch Models: Classic model - GrabCut Deep model - Deeplabv3_resnet101 Flo

Mor Ventura 1 Dec 18, 2021
CV backbones including GhostNet, TinyNet and TNT, developed by Huawei Noah's Ark Lab.

CV Backbones including GhostNet, TinyNet, TNT (Transformer in Transformer) developed by Huawei Noah's Ark Lab. GhostNet Code TinyNet Code TNT Code Pyr

HUAWEI Noah's Ark Lab 3k Jan 08, 2023
Official implementation for the paper: Permutation Invariant Graph Generation via Score-Based Generative Modeling

Permutation Invariant Graph Generation via Score-Based Generative Modeling This repo contains the official implementation for the paper Permutation In

64 Dec 29, 2022
KoRean based ELECTRA pre-trained models (KR-ELECTRA) for Tensorflow and PyTorch

KoRean based ELECTRA (KR-ELECTRA) This is a release of a Korean-specific ELECTRA model with comparable or better performances developed by the Computa

12 Jun 03, 2022
fklearn: Functional Machine Learning

fklearn: Functional Machine Learning fklearn uses functional programming principles to make it easier to solve real problems with Machine Learning. Th

nubank 1.4k Dec 07, 2022
这是一个yolox-pytorch的源码,可以用于训练自己的模型。

YOLOX:You Only Look Once目标检测模型在Pytorch当中的实现 目录 性能情况 Performance 实现的内容 Achievement 所需环境 Environment 小技巧的设置 TricksSet 文件下载 Download 训练步骤 How2train 预测步骤

Bubbliiiing 613 Jan 05, 2023
Unofficial implementation of One-Shot Free-View Neural Talking Head Synthesis

face-vid2vid Usage Dataset Preparation cd datasets wget https://yt-dl.org/downloads/latest/youtube-dl -O youtube-dl chmod a+rx youtube-dl python load_

worstcoder 68 Dec 30, 2022
PyGCL: Graph Contrastive Learning Library for PyTorch

PyGCL: Graph Contrastive Learning for PyTorch PyGCL is an open-source library for graph contrastive learning (GCL), which features modularized GCL com

GCL: Graph Contrastive Learning Library for PyTorch 594 Jan 08, 2023
Toward Multimodal Image-to-Image Translation

BicycleGAN Project Page | Paper | Video Pytorch implementation for multimodal image-to-image translation. For example, given the same night image, our

Jun-Yan Zhu 1.4k Dec 22, 2022
3rd place solution for the Weather4cast 2021 Stage 1 Challenge

weather4cast2021_Stage1 3rd place solution for the Weather4cast 2021 Stage 1 Challenge Dependencies The code can be executed from a fresh environment

5 Aug 14, 2022
A Momentumized, Adaptive, Dual Averaged Gradient Method for Stochastic Optimization

MADGRAD Optimization Method A Momentumized, Adaptive, Dual Averaged Gradient Method for Stochastic Optimization pip install madgrad Try it out! A best

Meta Research 774 Dec 31, 2022
This is an official implementation for "SimMIM: A Simple Framework for Masked Image Modeling".

Project This repo has been populated by an initial template to help get you started. Please make sure to update the content to build a great experienc

Microsoft 674 Dec 26, 2022
FinRL­-Meta: A Universe for Data­-Driven Financial Reinforcement Learning. 🔥

FinRL-Meta: A Universe of Market Environments. FinRL-Meta is a universe of market environments for data-driven financial reinforcement learning. Users

AI4Finance Foundation 543 Jan 08, 2023
Official code for "EagerMOT: 3D Multi-Object Tracking via Sensor Fusion" [ICRA 2021]

EagerMOT: 3D Multi-Object Tracking via Sensor Fusion Read our ICRA 2021 paper here. Check out the 3 minute video for the quick intro or the full prese

Aleksandr Kim 276 Dec 30, 2022
EASY - Ensemble Augmented-Shot Y-shaped Learning: State-Of-The-Art Few-Shot Classification with Simple Ingredients.

EASY - Ensemble Augmented-Shot Y-shaped Learning: State-Of-The-Art Few-Shot Classification with Simple Ingredients. This repository is the official im

Yassir BENDOU 57 Dec 26, 2022