Make Watson Assistant send messages to your Discord Server

Overview

Make Watson Assistant send messages to your Discord Server

Prerequisites

  1. Sign up for an IBM Cloud account.
  2. Fill in the required information and press the „Create Account“ button.
  3. After you submit your registration, you will receive an e-mail from the IBM Cloud team with details about your account. In this e-mail, you will need to click the link provided to confirm your registration.
  4. Now you should be able to login to your new IBM Cloud account ;-)
  5. Create a Discord account, as well your own Discord server (both are free of charge).

Activate Webhooks in Discord

We want to enable webhooks in our Discord server's settings, which will be used by Watson Assistant to send messages.

  1. Go to your server's settings
  2. Navigate to Integrations
  3. Create a new Webhook, and copy its URL

Note: Discord does not require any additional Authentification, which means that anyone who has the URL can use the Webhook. Ensure that only you, and people you trust have access to it.

Set up your cloud function

Create cloud function

We want to set up a cloud function, which Watson Assistant will be able to access. To do that, you need to go to your IBM Cloud Dashboard, and select Functions.

Alternatively you can click here to access the IBM Cloud functions.

Now you can create a new Action. Give it a sensible name, select python as your runtime, and click create.

Create Cloud Function Action

Paste in the code that can be found here, change the value of discordurl to your URL, and save your changes.

Test cloud function

If you want to test it, you can click on Invoke with parameter, paste in the input below, click apply, and press Invoke.

{
    "content" : "this is a test message sent by your cloud function"
}

If the message was sent successfully, the result should look like this.

Enable as Web Action

Now we need to create an endpoint, which will be used by Watson Assistant to invoce your function.

On the left side, click Endpoints and check the box called Enable as Web Action. Press save, and copy the URL.

Set up your Assistant

Set up Watson Assistant

Go back to your Dashboard, and type Watson Assistant into the search bar. If you already have a Watson Assistant service you can use it, otherwise you can create a free lite version either by clicking Watson Assistant under the Catalog Results Section or following this link.

Create your own Skill

Afterwards launch your Watson Assistant Service, and look for Skills on the left.

If you can't find it, click on the profile icon in the upper right corner, and click Switch to classic experience.

Create a new skill, select Dialog skill and click next. Select Upload skill and provide the skill-Connect-to-Discord.json file.

Enable Webhooks

Before you can test your assistant, you need to provide the cloud funtion's URL.

Click on Options->Webhooks, paste in the URL, and ADD A .json AT THE END.

We could use Discord's webhook link direcly, without adding a .json, and it would send the message as well. However, Discord doesn't return anything (that Watson Assistant can understand), which would prevent us from informing the user of our assistant, that the message was sent correctly.

Test your assistant

Now you can click on the Try it button and test whether the assistant is working correctly.


Official pytorch implement for “Transformer-Based Source-Free Domain Adaptation”

Official implementation for TransDA Official pytorch implement for “Transformer-Based Source-Free Domain Adaptation”. Overview: Result: Prerequisites:

stanley 54 Dec 22, 2022
Fusion-DHL: WiFi, IMU, and Floorplan Fusion for Dense History of Locations in Indoor Environments

Fusion-DHL: WiFi, IMU, and Floorplan Fusion for Dense History of Locations in Indoor Environments Paper: arXiv (ICRA 2021) Video : https://youtu.be/CC

Sachini Herath 68 Jan 03, 2023
YOLOv5 in PyTorch > ONNX > CoreML > TFLite

This repository represents Ultralytics open-source research into future object detection methods, and incorporates lessons learned and best practices evolved over thousands of hours of training and e

Ultralytics 34.1k Dec 31, 2022
Does Oversizing Improve Prosumer Profitability in a Flexibility Market? - A Sensitivity Analysis using PV-battery System

Does Oversizing Improve Prosumer Profitability in a Flexibility Market? - A Sensitivity Analysis using PV-battery System The possibilities to involve

Babu Kumaran Nalini 0 Nov 19, 2021
Chinese license plate recognition

AgentCLPR 简介 一个基于 ONNXRuntime、AgentOCR 和 License-Plate-Detector 项目开发的中国车牌检测识别系统。 车牌识别效果 支持多种车牌的检测和识别(其中单层车牌识别效果较好): 单层车牌: [[[[373, 282], [69, 284],

AgentMaker 26 Dec 25, 2022
Implementation of Kalman Filter in Python

Kalman Filter in Python This is a basic example of how Kalman filter works in Python. I do plan on refactoring and expanding this repo in the future.

Enoch Kan 35 Sep 11, 2022
MPLP: Metapath-Based Label Propagation for Heterogenous Graphs

MPLP: Metapath-Based Label Propagation for Heterogenous Graphs Results on MAG240M Here, we demonstrate the following performance on the MAG240M datase

Qiuying Peng 10 Jun 28, 2022
Pytorch implementation of few-shot semantic image synthesis

Few-shot Semantic Image Synthesis Using StyleGAN Prior Our method can synthesize photorealistic images from dense or sparse semantic annotations using

40 Sep 26, 2022
Contrastively Disentangled Sequential Variational Audoencoder

Contrastively Disentangled Sequential Variational Audoencoder (C-DSVAE) Overview This is the implementation for our C-DSVAE, a novel self-supervised d

Junwen Bai 35 Dec 24, 2022
FAST Aiming at the problems of cumbersome steps and slow download speed of GNSS data

FAST Aiming at the problems of cumbersome steps and slow download speed of GNSS data, a relatively complete set of integrated multi-source data download terminal software fast is developed. The softw

ChangChuntao 23 Dec 31, 2022
Moiré Attack (MA): A New Potential Risk of Screen Photos [NeurIPS 2021]

Moiré Attack (MA): A New Potential Risk of Screen Photos [NeurIPS 2021] This repository is the official implementation of Moiré Attack (MA): A New Pot

Dantong Niu 22 Dec 24, 2022
Seeing Dynamic Scene in the Dark: High-Quality Video Dataset with Mechatronic Alignment (ICCV2021)

Seeing Dynamic Scene in the Dark: High-Quality Video Dataset with Mechatronic Alignment This is a pytorch project for the paper Seeing Dynamic Scene i

DV Lab 21 Nov 28, 2022
This is a deep learning-based method to segment deep brain structures and a brain mask from T1 weighted MRI.

DBSegment This tool generates 30 deep brain structures segmentation, as well as a brain mask from T1-Weighted MRI. The whole procedure should take ~1

Luxembourg Neuroimaging (Platform OpNeuroImg) 2 Oct 25, 2022
Official PyTorch Implementation of paper "NeLF: Neural Light-transport Field for Single Portrait View Synthesis and Relighting", EGSR 2021.

NeLF: Neural Light-transport Field for Single Portrait View Synthesis and Relighting Official PyTorch Implementation of paper "NeLF: Neural Light-tran

Ken Lin 38 Dec 26, 2022
HarDNeXt: Official HarDNeXt repository

HarDNeXt-Pytorch HarDNeXt: A Stage Receptive Field and Connectivity Aware Convolution Neural Network HarDNeXt-MSEG for Medical Image Segmentation in 0

5 May 26, 2022
Deep Sea Treasure Environment for Multi-Objective Optimization Research

DeepSeaTreasure Environment Installation In order to get started with this environment, you can install it using the following command: python3 -m pip

imec IDLab 6 Nov 14, 2022
code for paper "Not All Unlabeled Data are Equal: Learning to Weight Data in Semi-supervised Learning" by Zhongzheng Ren*, Raymond A. Yeh*, Alexander G. Schwing.

Not All Unlabeled Data are Equal: Learning to Weight Data in Semi-supervised Learning Overview This code is for paper: Not All Unlabeled Data are Equa

Jason Ren 22 Nov 23, 2022
2021 credit card consuming recommendation

2021 credit card consuming recommendation

Wang, Chung-Che 7 Mar 08, 2022
Pytorch implementations of Bayes By Backprop, MC Dropout, SGLD, the Local Reparametrization Trick, KF-Laplace, SG-HMC and more

Bayesian Neural Networks Pytorch implementations for the following approximate inference methods: Bayes by Backprop Bayes by Backprop + Local Reparame

1.4k Jan 07, 2023
Code for "Long-tailed Distribution Adaptation"

Long-tailed Distribution Adaptation (Accepted in ACM MM2021) This project is built upon BBN. Installation pip install -r requirements.txt Usage Traini

Zhiliang Peng 10 May 18, 2022