Point Cloud Denoising input segmentation output raw point-cloud valid/clear fog rain de-noised Abstract Lidar sensors are frequently used in environme

Overview

Point Cloud Denoising

input segmentation output
#9F1924 raw point-cloud #9E9E9E valid/clear #7300E6 fog #009999 rain #6EA046 de-noised

Abstract

Lidar sensors are frequently used in environment perception for autonomous vehicles and mobile robotics to complement camera, radar, and ultrasonic sensors. Adverse weather conditions are significantly impacting the performance of lidar-based scene understanding by causing undesired measurement points that in turn effect missing detections and false positives. In heavy rain or dense fog, water drops could be misinterpreted as objects in front of the vehicle which brings a mobile robot to a full stop. In this paper, we present the first CNN-based approach to understand and filter out such adverse weather effects in point cloud data. Using a large data set obtained in controlled weather environments, we demonstrate a significant performance improvement of our method over state-of-the-art involving geometric filtering.

Download Dataset

Information: Click here for registration and download.

Dataset Information

  • each channel contains a matrix with 32x400 values, ordered in layers and columns
  • the coordinate system is based on the conventions for land vehicles DIN ISO 8855 (Wikipedia)
hdf5 channels info
labels_1 groundtruth labels, 0: no label, 100: valid/clear, 101: rain, 102: fog
distance_m_1 distance in meter
intensity_1 raw intensity of the sensor
sensorX_1 x-coordinates in a projected 32x400 view
sensorY_1 y-coordinates in a projected 32x400 view
sensorZ_1 z-coordinates in a projected 32x400 view
hdf5 attributes info
dateStr date of the recording yyyy-mm-dd
timeStr timestamp of the recording HH:MM:SS
meteorologicalVisibility_m ground truth meteorological visibility in meter provided by the climate chamber
rainfallRate_mmh ground truth rainfall rate in mm/h provided by the climate chamber
# example for reading the hdf5 attributes
import h5py
with h5py.File(filename, "r", driver='core') as hdf5:
  weather_data = dict(hdf5.attrs)

Getting Started

We provide documented tools for visualization in python using ROS. Therefore, you need to install ROS and the rospy client API first.

  • install rospy
apt install python-rospy  

Then start "roscore" and "rviz" in separate terminals.

Afterwards, you can use the visualization tool:

  • clone the repository:
cd ~/workspace
git clone https://github.com/rheinzler/PointCloudDeNoising.git
cd ~/workspace/PointCloudDeNoising
  • create a virtual environment:
mkdir -p ~/workspace/PointCloudDeNoising/venv
virtualenv --no-site-packages -p python3 ~/workspace/PointCloudDeNoising/venv
  • source virtual env and install dependencies:
source ~/workspace/PointCloudDeNoising/venv/bin/activate
pip install -r requirements.txt
  • start visualization:
cd src
python visu.py

Notes:

  • We used the following label mapping for a single lidar point: 0: no label, 100: valid/clear, 101: rain, 102: fog
  • Before executing the script you should change the input path

Reference

If you find our work on lidar point-cloud de-noising in adverse weather useful for your research, please consider citing our work.:

@article{PointCloudDeNoising2020, 
  author   = {Heinzler, Robin and Piewak, Florian and Schindler, Philipp and Stork, Wilhelm},
  journal  = {IEEE Robotics and Automation Letters}, 
  title    = {CNN-based Lidar Point Cloud De-Noising in Adverse Weather}, 
  year     = {2020}, 
  keywords = {Semantic Scene Understanding;Visual Learning;Computer Vision for Transportation}, 
  doi      = {10.1109/LRA.2020.2972865}, 
  ISSN     = {2377-3774}
}

Acknowledgements

This work has received funding from the European Union under the H2020 ECSEL Programme as part of the DENSE project, contract number 692449. We thank Velodyne Lidar, Inc. for permission to publish this dataset.

Feedback/Questions/Error reporting

Feedback? Questions? Any problems or errors? Please do not hesitate to contact us!

MIMO-UNet - Official Pytorch Implementation

MIMO-UNet - Official Pytorch Implementation This repository provides the official PyTorch implementation of the following paper: Rethinking Coarse-to-

Sungjin Cho 248 Jan 02, 2023
Get the partition that a file belongs and the percentage of space that consumes

tinos_eisai_sy Get the partition that a file belongs and the percentage of space that consumes (works only with OSes that use the df command) tinos_ei

Konstantinos Patronas 6 Jan 24, 2022
Code and data for paper "Deep Photo Style Transfer"

deep-photo-styletransfer Code and data for paper "Deep Photo Style Transfer" Disclaimer This software is published for academic and non-commercial use

Fujun Luan 9.9k Dec 29, 2022
Ground truth data for the Optical Character Recognition of Historical Classical Commentaries.

OCR Ground Truth for Historical Commentaries The dataset OCR ground truth for historical commentaries (GT4HistComment) was created from the public dom

Ajax Multi-Commentary 3 Sep 08, 2022
Tooling for GANs in TensorFlow

TensorFlow-GAN (TF-GAN) TF-GAN is a lightweight library for training and evaluating Generative Adversarial Networks (GANs). Can be installed with pip

803 Dec 24, 2022
Code for DisCo: Remedy Self-supervised Learning on Lightweight Models with Distilled Contrastive Learning

DisCo: Remedy Self-supervised Learning on Lightweight Models with Distilled Contrastive Learning Pytorch Implementation for DisCo: Remedy Self-supervi

79 Jan 06, 2023
[arXiv'22] Panoptic NeRF: 3D-to-2D Label Transfer for Panoptic Urban Scene Segmentation

Panoptic NeRF Project Page | Paper | Dataset Panoptic NeRF: 3D-to-2D Label Transfer for Panoptic Urban Scene Segmentation Xiao Fu*, Shangzhan zhang*,

Xiao Fu 111 Dec 16, 2022
SporeAgent: Reinforced Scene-level Plausibility for Object Pose Refinement

SporeAgent: Reinforced Scene-level Plausibility for Object Pose Refinement This repository implements the approach described in SporeAgent: Reinforced

Dominik Bauer 5 Jan 02, 2023
A simple python library for fast image generation of people who do not exist.

Random Face A simple python library for fast image generation of people who do not exist. For more details, please refer to the [paper](https://arxiv.

Sergei Belousov 170 Dec 15, 2022
The official implementation of the research paper "DAG Amendment for Inverse Control of Parametric Shapes"

DAG Amendment for Inverse Control of Parametric Shapes This repository is the official Blender implementation of the paper "DAG Amendment for Inverse

Elie Michel 157 Dec 26, 2022
In-place Parallel Super Scalar Samplesort (IPS⁴o)

In-place Parallel Super Scalar Samplesort (IPS⁴o) This is the implementation of the algorithm IPS⁴o presented in the paper Engineering In-place (Share

82 Dec 22, 2022
Official repository of Semantic Image Matting

Semantic Image Matting This is the official repository of Semantic Image Matting (CVPR2021). Overview Natural image matting separates the foreground f

192 Dec 29, 2022
Improving Deep Network Debuggability via Sparse Decision Layers

Improving Deep Network Debuggability via Sparse Decision Layers This repository contains the code for our paper: Leveraging Sparse Linear Layers for D

Madry Lab 35 Nov 14, 2022
Code for “ACE-HGNN: Adaptive Curvature ExplorationHyperbolic Graph Neural Network”

ACE-HGNN: Adaptive Curvature Exploration Hyperbolic Graph Neural Network This repository is the implementation of ACE-HGNN in PyTorch. Environment pyt

9 Nov 28, 2022
xitorch: differentiable scientific computing library

xitorch is a PyTorch-based library of differentiable functions and functionals that can be widely used in scientific computing applications as well as deep learning.

24 Apr 15, 2021
Fast and accurate optimisation for registration with little learningconvexadam

convexAdam Learn2Reg 2021 Submission Fast and accurate optimisation for registration with little learning Excellent results on Learn2Reg 2021 challeng

17 Dec 06, 2022
A large dataset of 100k Google Satellite and matching Map images, resembling pix2pix's Google Maps dataset.

Larger Google Sat2Map dataset This dataset extends the aerial ⟷ Maps dataset used in pix2pix (Isola et al., CVPR17). The provide script download_sat2m

34 Dec 28, 2022
Defocus Map Estimation and Deblurring from a Single Dual-Pixel Image

Defocus Map Estimation and Deblurring from a Single Dual-Pixel Image This repository is an implementation of the method described in the following pap

21 Dec 15, 2022
PyTorch implementation of NIPS 2017 paper Dynamic Routing Between Capsules

Dynamic Routing Between Capsules - PyTorch implementation PyTorch implementation of NIPS 2017 paper Dynamic Routing Between Capsules from Sara Sabour,

Adam Bielski 475 Dec 24, 2022
Simulating Sycamore quantum circuits classically using tensor network algorithm.

Simulating the Sycamore quantum supremacy circuit This repo contains data we have obtained in simulating the Sycamore quantum supremacy circuits with

Feng Pan 46 Nov 17, 2022