Referring Video Object Segmentation

Overview

Awesome-Referring-Video-Object-Segmentation Awesome

Welcome to starts โญ & comments ๐Ÿ’น & sharing ๐Ÿ˜€ !!

- 2021.12.12: Recent papers (from 2021) 
- welcome to add if any information misses. ๐Ÿ˜Ž

Introduction

image

Referring video object segmentation aims at segmenting an object in video with language expressions.

Unlike the previous video object segmentation, the task exploits a different type of supervision, language expressions, to identify and segment an object referred by the given language expressions in a video. A detailed explanation of the new task can be found in the following paper.

Seonguk Seo, Joon-Young Lee, Bohyung Han, โ€œURVOS: Unified Referring Video Object Segmentation Network with a Large-Scale Benchmarkโ€, European Conference on Computer Vision (ECCV), 2020:https://www.ecva.net/papers/eccv_2020/papers_ECCV/papers/123600205.pdf

Impressive Works Related to Referring Video Object Segmentation (RVOS)

Cross-modal progressive comprehension for referring segmentation:https://arxiv.org/abs/2105.07175 image

Benchmark

The 3rd Large-scale Video Object Segmentation - Track 3: Referring Video Object Segmentation

Datasets

image

Refer-YouTube-VOS-datasets

  • YouTube-VOS:
wget https://github.com/JerryX1110/awesome-rvos/blob/main/down_YTVOS_w_refer.py
python down_YTVOS_w_refer.py

Folder structure:

${current_path}/
โ””โ”€โ”€ refer_youtube_vos/ 
    โ”œโ”€โ”€ train/
    โ”‚   โ”œโ”€โ”€ JPEGImages/
    โ”‚   โ”‚   โ””โ”€โ”€ */ (video folders)
    โ”‚   โ”‚       โ””โ”€โ”€ *.jpg (frame image files) 
    โ”‚   โ””โ”€โ”€ Annotations/
    โ”‚       โ””โ”€โ”€ */ (video folders)
    โ”‚           โ””โ”€โ”€ *.png (mask annotation files) 
    โ”œโ”€โ”€ valid/
    โ”‚   โ””โ”€โ”€ JPEGImages/
    โ”‚       โ””โ”€โ”€ */ (video folders)
    โ”‚           โ””โ”€โ”€ *.jpg (frame image files) 
    โ””โ”€โ”€ meta_expressions/
        โ”œโ”€โ”€ train/
        โ”‚   โ””โ”€โ”€ meta_expressions.json  (text annotations)
        โ””โ”€โ”€ valid/
            โ””โ”€โ”€ meta_expressions.json  (text annotations)
  • A2D-Sentences:

REPO:https://web.eecs.umich.edu/~jjcorso/r/a2d/

paper:https://arxiv.org/abs/1803.07485

image

Citation:

@misc{gavrilyuk2018actor,
      title={Actor and Action Video Segmentation from a Sentence}, 
      author={Kirill Gavrilyuk and Amir Ghodrati and Zhenyang Li and Cees G. M. Snoek},
      year={2018},
      eprint={1803.07485},
      archivePrefix={arXiv},
      primaryClass={cs.CV}
}

License: The dataset may not be republished in any form without the written consent of the authors.

README Dataset and Annotation (version 1.0, 1.9GB, tar.bz) Evaluation Toolkit (version 1.0, tar.bz)

mkdir a2d_sentences
cd a2d_sentences
wget https://web.eecs.umich.edu/~jjcorso/bigshare/A2D_main_1_0.tar.bz
tar jxvf A2D_main_1_0.tar.bz
mkdir text_annotations

cd text_annotations
wget https://kgavrilyuk.github.io/actor_action/a2d_annotation.txt
wget https://kgavrilyuk.github.io/actor_action/a2d_missed_videos.txt
wget https://github.com/JerryX1110/awesome-rvos/blob/main/down_a2d_annotation_with_instances.py
python down_a2d_annotation_with_instances.py
unzip a2d_annotation_with_instances.zip
#rm a2d_annotation_with_instances.zip
cd ..

cd ..

Folder structure:

${current_path}/
โ””โ”€โ”€ a2d_sentences/ 
    โ”œโ”€โ”€ Release/
    โ”‚   โ”œโ”€โ”€ videoset.csv  (videos metadata file)
    โ”‚   โ””โ”€โ”€ CLIPS320/
    โ”‚       โ””โ”€โ”€ *.mp4     (video files)
    โ””โ”€โ”€ text_annotations/
        โ”œโ”€โ”€ a2d_annotation.txt  (actual text annotations)
        โ”œโ”€โ”€ a2d_missed_videos.txt
        โ””โ”€โ”€ a2d_annotation_with_instances/ 
            โ””โ”€โ”€ */ (video folders)
                โ””โ”€โ”€ *.h5 (annotations files) 

Citation:

@inproceedings{YaXuCaCVPR2017,
  author = {Yan, Y. and Xu, C. and Cai, D. and {\bf Corso}, {\bf J. J.}},
  booktitle = {{Proceedings of IEEE Conference on Computer Vision and Pattern Recognition}},
  tags = {computer vision, activity recognition, video understanding, semantic segmentation},
  title = {Weakly Supervised Actor-Action Segmentation via Robust Multi-Task Ranking},
  year = {2017}
}
@inproceedings{XuCoCVPR2016,
  author = {Xu, C. and {\bf Corso}, {\bf J. J.}},
  booktitle = {{Proceedings of IEEE Conference on Computer Vision and Pattern Recognition}},
  datadownload = {http://web.eecs.umich.edu/~jjcorso/r/a2d},
  tags = {computer vision, activity recognition, video understanding, semantic segmentation},
  title = {Actor-Action Semantic Segmentation with Grouping-Process Models},
  year = {2016}
}
@inproceedings{XuHsXiCVPR2015,
  author = {Xu, C. and Hsieh, S.-H. and Xiong, C. and {\bf Corso}, {\bf J. J.}},
  booktitle = {{Proceedings of IEEE Conference on Computer Vision and Pattern Recognition}},
  datadownload = {http://web.eecs.umich.edu/~jjcorso/r/a2d},
  poster = {http://web.eecs.umich.edu/~jjcorso/pubs/xu_corso_CVPR2015_A2D_poster.pdf},
  tags = {computer vision, activity recognition, video understanding, semantic segmentation},
  title = {Can Humans Fly? {Action} Understanding with Multiple Classes of Actors},
  url = {http://web.eecs.umich.edu/~jjcorso/pubs/xu_corso_CVPR2015_A2D.pdf},
  year = {2015}
}

image

downloading_script

mkdir jhmdb_sentences
cd jhmdb_sentences
wget http://files.is.tue.mpg.de/jhmdb/Rename_Images.tar.gz
wget https://kgavrilyuk.github.io/actor_action/jhmdb_annotation.txt
wget http://files.is.tue.mpg.de/jhmdb/puppet_mask.zip
tar -xzvf  Rename_Images.tar.gz
unzip puppet_mask.zip
cd ..

Folder structure:

${current_path}/
โ””โ”€โ”€ jhmdb_sentences/ 
    โ”œโ”€โ”€ Rename_Images/  (frame images)
    โ”‚   โ””โ”€โ”€ */ (action dirs)
    โ”œโ”€โ”€ puppet_mask/  (mask annotations)
    โ”‚   โ””โ”€โ”€ */ (action dirs)
    โ””โ”€โ”€ jhmdb_annotation.txt  (text annotations)

Citation:

@inproceedings{Jhuang:ICCV:2013,
title = {Towards understanding action recognition},
author = {H. Jhuang and J. Gall and S. Zuffi and C. Schmid and M. J. Black},
booktitle = {International Conf. on Computer Vision (ICCV)},
month = Dec,
pages = {3192-3199},
year = {2013}
}

image image image

Owner
Explorer
Explorer
PN-Net a neural field-based framework for depth estimation from single-view RGB images.

PN-Net We present a neural field-based framework for depth estimation from single-view RGB images. Rather than representing a 2D depth map as a single

1 Oct 02, 2021
Implement of homography net by pytorch

HomographyNet Implement of homography net by pytorch Brief Introduction This project is based on the work Homography-Net: @article{detone2016deep, t

ronghao_CN 4 May 19, 2022
Spectral normalization (SN) is a widely-used technique for improving the stability and sample quality of Generative Adversarial Networks (GANs)

Why Spectral Normalization Stabilizes GANs: Analysis and Improvements [paper (NeurIPS 2021)] [paper (arXiv)] [code] Authors: Zinan Lin, Vyas Sekar, Gi

Zinan Lin 32 Dec 16, 2022
Code for NAACL 2021 full paper "Efficient Attentions for Long Document Summarization"

LongDocSum Code for NAACL 2021 paper "Efficient Attentions for Long Document Summarization" This repository contains data and models needed to reprodu

56 Jan 02, 2023
Topic Modelling for Humans

gensim โ€“ Topic Modelling in Python Gensim is a Python library for topic modelling, document indexing and similarity retrieval with large corpora. Targ

RARE Technologies 13.8k Jan 03, 2023
Functional deep learning

Pipeline abstractions for deep learning. Full documentation here: https://lf1-io.github.io/padl/ PADL: is a pipeline builder for PyTorch. may be used

LF1 101 Nov 09, 2022
Latex code for making neural networks diagrams

PlotNeuralNet Latex code for drawing neural networks for reports and presentation. Have a look into examples to see how they are made. Additionally, l

Haris Iqbal 18.6k Jan 01, 2023
Used to record WKU's utility bills on a regular basis.

WKUๆฐด็”ต่ดนๅฐๅŠฉๆ‰‹ ไธ€ไธช็”จไบŽๅฎšๆœŸ่ฎฐๅฝ•WKUๆฐด็”ต่ดน็š„่„šๆœฌ Looking for English Readme? ่ƒŒๆ™ฏ ็”ฑไบŽWKUๆ กๅ›ญๅ†…็š„ๆฐด็”ต่ดฆๅ•็ณป็ปŸๆ—ถๅธธๅญ˜ๅœจๆ‰ฃ่ดนๅปถ่ฟŸ็š„็Žฐ่ฑก๏ผŒ่€Œ่กฅๆ‰ฃ็š„่ดน็”จ็ผบไนไปคไบบไฟกๆœ็š„่ฏๆ˜Žใ€‚ไธๅฐ‘ๅญฆ็”Ÿไธบ่ดน็”จๆ‘ธไธ็€ๅคด่„‘๏ผŒไฝ†ไนŸๆฒกๆœ‰็”ณ่ฏ‰็š„ไพๆฎใ€‚ไธบไบ†ๆ›ดๅฅฝๅœฐๆŽŒๆกๆฐด็”ต่ดนไฝฟ็”จๆƒ…ๅ†ต๏ผŒ็•™ไธ‹ไธ€ๆ‰‹่ฏๆฎ๏ผŒๆˆ‘ๅผ€ๆบ

2 Jul 21, 2022
The repo contains the code to train and evaluate a system which extracts relations and explanations from dialogue.

The repo contains the code to train and evaluate a system which extracts relations and explanations from dialogue. How do I cite D-REX? For now, cite

Alon Albalak 6 Mar 31, 2022
Causal estimators for use with WhyNot

WhyNot Estimators A collection of causal inference estimators implemented in Python and R to pair with the Python causal inference library whynot. For

ZYKLS 8 Apr 06, 2022
E-Ink Magic Calendar that automatically syncs to Google Calendar and runs off a battery powered Raspberry Pi Zero

MagInkCal This repo contains the code needed to drive an E-Ink Magic Calendar that uses a battery powered (PiSugar2) Raspberry Pi Zero WH to retrieve

2.8k Dec 28, 2022
The official github repository for Towards Continual Knowledge Learning of Language Models

Towards Continual Knowledge Learning of Language Models This is the official github repository for Towards Continual Knowledge Learning of Language Mo

Joel Jang | ์žฅ์š”์—˜ 65 Jan 07, 2023
Audio Domain Adaptation for Acoustic Scene Classification using Disentanglement Learning

Audio Domain Adaptation for Acoustic Scene Classification using Disentanglement Learning Reference AbeรŸer, J. & Mรผller, M. Towards Audio Domain Adapt

Jakob AbeรŸer 2 Jul 06, 2022
Official PyTorch Implementation of paper "NeLF: Neural Light-transport Field for Single Portrait View Synthesis and Relighting", EGSR 2021.

NeLF: Neural Light-transport Field for Single Portrait View Synthesis and Relighting Official PyTorch Implementation of paper "NeLF: Neural Light-tran

Ken Lin 38 Dec 26, 2022
Adversarial Graph Augmentation to Improve Graph Contrastive Learning

ADGCL : Adversarial Graph Augmentation to Improve Graph Contrastive Learning Introduction This repo contains the Pytorch [1] implementation of Adversa

susheel suresh 62 Nov 19, 2022
The implementation of the lifelong infinite mixture model

Lifelong infinite mixture model ๐Ÿ“‹ This is the implementation of the Lifelong infinite mixture model ๐Ÿ“‹ Accepted by ICCV 2021 Title : Lifelong Infinit

Fei Ye 5 Oct 20, 2022
An addon uses SMPL's poses and global translation to drive cartoon character in Blender.

Blender addon for driving character The addon drives the cartoon character by passing SMPL's poses and global translation into model's armature in Ble

็Šนๅœจ้•œไธญ 153 Dec 14, 2022
Denoising Diffusion Probabilistic Models

Denoising Diffusion Probabilistic Models Jonathan Ho, Ajay Jain, Pieter Abbeel Paper: https://arxiv.org/abs/2006.11239 Website: https://hojonathanho.g

Jonathan Ho 1.5k Jan 08, 2023
Implementation of NรœWA, state of the art attention network for text to video synthesis, in Pytorch

NรœWA - Pytorch (wip) Implementation of NรœWA, state of the art attention network for text to video synthesis, in Pytorch. This repository will be popul

Phil Wang 463 Dec 28, 2022
Official code for "Eigenlanes: Data-Driven Lane Descriptors for Structurally Diverse Lanes", CVPR2022

[CVPR 2022] Eigenlanes: Data-Driven Lane Descriptors for Structurally Diverse Lanes Dongkwon Jin, Wonhui Park, Seong-Gyun Jeong, Heeyeon Kwon, and Cha

Dongkwon Jin 106 Dec 29, 2022