Python tools for 3D face: 3DMM, Mesh processing(transform, camera, light, render), 3D face representations.

Related tags

Deep Learningface3d
Overview

face3d: Python tools for processing 3D face

Introduction

This project implements some basic functions related to 3D faces.

You can use this to process mesh data, generate 3D faces from morphable model, reconstruct 3D face with a single image and key points as inputs, render faces with difference lightings(for more, please see examples).

In the beginning, I wrote this project for learning 3D face reconstruction and for personal research use, so all the codes are written in python(numpy). However, some functions(eg. rasterization) can not use vectorization to optimize, writing them in python is too slow to use, then I choose to write these core parts in c++(without any other big libraries, such as opencv, eigen) and compile them with Cython for python use. So the final version is very lightweight and fast.

In addition, the numpy version is also retained, considering that beginners can focus on algorithms themselves in python and researches can modify and verify their ideas quickly. I also try my best to add references/formulas in each function, so that you can learn basic knowledge and understand the codes.

For more information and researches related to 3D faces, please see 3D face papers.

Enjoy it ^_^

Structure

# Since triangle mesh is the most popular representation of 3D face, 
# the main part is mesh processing.
mesh/             # written in python and c++
|  cython/               # c++ files, use cython to compile 
|  io.py                 # read & write obj
|  vis.py                # plot mesh
|  transform.py          # transform mesh & estimate matrix
|  light.py              # add light & estimate light(to do)
|  render.py             # obj to image using rasterization render

mesh_numpy/      # the same with mesh/, with each part written in numpy
                 # slow but easy to learn and modify

# 3DMM is one of the most popular methods to generate & reconstruct 3D face.
morphable_model/
|  morphable_model.py    # morphable model class: generate & fit
|  fit.py                # estimate shape&expression parameters. 3dmm fitting.
|  load.py               # load 3dmm data

Examples:

cd ./examples

  • 3dmm. python 2_3dmm.py

    left: random example generated by 3dmm

    right: fitting face with 3dmm using 68 key points

  • transform. python 3_transform.py
    left:

    fix camera position & use orthographic projection. (often used in reconstruction)

    then transform face object: scale, change pitch angle, change yaw angle, change roll angle

    right:

    fix obj position & use perspective projection(fovy=30). (simulating real views)

    then move camera position and rotate camera: from far to near, down & up, left & right, rotate camera

  • light. python 4_light.py

    single point light: from left to right, from up to down, from near to far

  • image map python 6_image_map.py

    render different attributes in image pixels.

    : depth, pncc, uv coordinates

  • uv map python 7_uv_map.py

    render different attributes in uv coordinates.

    : colors(texture map), position(2d facial image & corresponding position map)

Getting Started

Prerequisite

  • Python 2 or Python 3

  • Python packages:

    • numpy
    • skimage (for reading&writing image)
    • scipy (for loading mat)
    • matplotlib (for show)
    • Cython (for compiling c++ file)

Usage

  1. Clone the repository

    git clone https://github.com/YadiraF/face3d
    cd face3d
  2. Compile c++ files to .so for python use (ignore if you use numpy version)

    cd face3d/mesh/cython
    python setup.py build_ext -i 
  3. Prepare BFM Data (ignore if you don't use 3dmm)

    see Data/BFM/readme.md

  4. Run examples

    (examples use cython version, you can change mesh into mesh_numpy to use numpy version)

    cd examples
    python 1_pipeline.py 

    For beginners who want to continue researches on 3D faces, I strongly recommend you first run examples according to the order, then view the codes in mesh_numpy and read the comments written in the beginning in each file. Hope this helps!

    Moreover, I am new in computer graphics, so it would be great appreciated if you could point out some of my wrong expressions. Thanks!

Changelog

  • 2018/10/08 change structure. add comments. add introduction. add paper collections.
  • 2018/07/15 first release
Owner
Yao Feng
Yao Feng
一个目标检测的通用框架(不需要cuda编译),支持Yolo全系列(v2~v5)、EfficientDet、RetinaNet、Cascade-RCNN等SOTA网络。

一个目标检测的通用框架(不需要cuda编译),支持Yolo全系列(v2~v5)、EfficientDet、RetinaNet、Cascade-RCNN等SOTA网络。

Haoyu Xu 203 Jan 03, 2023
PyTorch implementation of spectral graph ConvNets, NIPS’16

Graph ConvNets in PyTorch October 15, 2017 Xavier Bresson http://www.ntu.edu.sg/home/xbresson https://github.com/xbresson https://twitter.com/xbresson

Xavier Bresson 287 Jan 04, 2023
HyperLib: Deep learning in the Hyperbolic space

HyperLib: Deep learning in the Hyperbolic space Background This library implements common Neural Network components in the hypberbolic space (using th

105 Dec 25, 2022
How Effective is Incongruity? Implications for Code-mix Sarcasm Detection.

Code for the paper: How Effective is Incongruity? Implications for Code-mix Sarcasm Detection - ICON ACL 2021

2 Jun 05, 2022
a morph transfer UGATIT for image translation.

Morph-UGATIT a morph transfer UGATIT for image translation. Introduction 中文技术文档 This is Pytorch implementation of UGATIT, paper "U-GAT-IT: Unsupervise

55 Nov 14, 2022
Flaxformer: transformer architectures in JAX/Flax

Flaxformer is a transformer library for primarily NLP and multimodal research at Google.

Google 116 Jan 05, 2023
Computationally efficient algorithm that identifies boundary points of a point cloud.

BoundaryTest Included are MATLAB and Python packages, each of which implement efficient algorithms for boundary detection and normal vector estimation

6 Dec 09, 2022
A smaller subset of 10 easily classified classes from Imagenet, and a little more French

Imagenette 🎶 Imagenette, gentille imagenette, Imagenette, je te plumerai. 🎶 (Imagenette theme song thanks to Samuel Finlayson) NB: Versions of Image

fast.ai 718 Jan 01, 2023
How to Learn a Domain Adaptive Event Simulator? ACM MM, 2021

LETGAN How to Learn a Domain Adaptive Event Simulator? ACM MM 2021 Running Environment: pytorch=1.4, 1 NVIDIA-1080TI. More details can be found in pap

CVTEAM 4 Sep 20, 2022
N-gram models- Unsmoothed, Laplace, Deleted Interpolation

N-gram models- Unsmoothed, Laplace, Deleted Interpolation

Ravika Nagpal 1 Jan 04, 2022
AnimationKit: AI Upscaling & Interpolation using Real-ESRGAN+RIFE

ALPHA 2.5: Frostbite Revival (Released 12/23/21) Changelog: [ UI ] Chained design. All steps link to one another! Use the master override toggles to s

87 Nov 16, 2022
A TensorFlow implementation of Neural Program Synthesis from Diverse Demonstration Videos

ViZDoom http://vizdoom.cs.put.edu.pl ViZDoom allows developing AI bots that play Doom using only the visual information (the screen buffer). It is pri

Hyeonwoo Noh 1 Aug 19, 2020
SphereFace: Deep Hypersphere Embedding for Face Recognition

SphereFace: Deep Hypersphere Embedding for Face Recognition By Weiyang Liu, Yandong Wen, Zhiding Yu, Ming Li, Bhiksha Raj and Le Song License SphereFa

Weiyang Liu 1.5k Dec 29, 2022
CVAT is free, online, interactive video and image annotation tool for computer vision

Computer Vision Annotation Tool (CVAT) CVAT is free, online, interactive video and image annotation tool for computer vision. It is being used by our

OpenVINO Toolkit 8.6k Jan 04, 2023
Self-Learning - Books Papers, Courses & more I have to learn soon

Self-Learning This repository is intended to be used for personal use, all rights reserved to respective owners, please cite original authors and ask

Achint Chaudhary 968 Jan 02, 2022
PyTorch Implementation of the SuRP algorithm by the authors of the AISTATS 2022 paper "An Information-Theoretic Justification for Model Pruning"

PyTorch Implementation of the SuRP algorithm by the authors of the AISTATS 2022 paper "An Information-Theoretic Justification for Model Pruning".

Berivan Isik 8 Dec 08, 2022
OpenFed: A Comprehensive and Versatile Open-Source Federated Learning Framework

OpenFed: A Comprehensive and Versatile Open-Source Federated Learning Framework Introduction OpenFed is a foundational library for federated learning

25 Dec 12, 2022
Bayesian Neural Networks in PyTorch

We present the new scheme to compute Monte Carlo estimator in Bayesian VI settings with almost no memory cost in GPU, regardles of the number of sampl

Jurijs Nazarovs 7 May 03, 2022
A testcase generation tool for Persistent Memory Programs.

PMFuzz PMFuzz is a testcase generation tool to generate high-value tests cases for PM testing tools (XFDetector, PMDebugger, PMTest and Pmemcheck) If

Systems Research at ShiftLab 14 Jul 24, 2022
Feature extraction made simple with torchextractor

torchextractor: PyTorch Intermediate Feature Extraction Introduction Too many times some model definitions get remorselessly copy-pasted just because

Antoine Broyelle 89 Oct 31, 2022