A PyTorch-based Semi-Supervised Learning (SSL) Codebase for Pixel-wise (Pixel) Vision Tasks

Overview

PixelSSL is a PyTorch-based semi-supervised learning (SSL) codebase for pixel-wise (Pixel) vision tasks.

The purpose of this project is to promote the research and application of semi-supervised learning on pixel-wise vision tasks. PixelSSL provides two major features:

  • Interface for implementing new semi-supervised algorithms
  • Template for encapsulating diverse computer vision tasks

As a result, the SSL algorithms integrated in PixelSSL are compatible with all task codes inherited from the given template.

In addition, PixelSSL provides the benchmarks for validating semi-supervised learning algorithms for some pixel-level tasks, which now include semantic segmentation.

News

  • [Dec 25 2020] PixelSSL v0.1.4 is Released!
    🎄 Merry Christmas! 🎄
    v0.1.4 supports the CutMix semi-supervised learning algorithm for pixel-wise classification.

  • [Nov 06 2020] PixelSSL v0.1.3 is Released!
    v0.1.3 supports the CCT semi-supervised learning algorithm for pixel-wise classification.

  • [Oct 28 2020] PixelSSL v0.1.2 is Released!
    v0.1.2 supports PSPNet and its SSL results for semantic segmentation task (check here).

    [More]

Supported Algorithms and Tasks

We are actively updating this project.
The SSL algorithms and demo tasks supported by PixelSSL are summarized in the following table:

Algorithms / Tasks Segmentation Other Tasks
SupOnly v0.1.0 Coming Soon
MT [1] v0.1.0 Coming Soon
AdvSSL [2] v0.1.0 Coming Soon
S4L [3] v0.1.1 Coming Soon
CCT [4] v0.1.3 Coming Soon
GCT [5] v0.1.0 Coming Soon
CutMix [6] v0.1.4 Coming Soon

[1] Mean Teachers are Better Role Models: Weight-Averaged Consistency Targets Improve Semi-Supervised Deep Learning Results
      Antti Tarvainen, and Harri Valpola. NeurIPS 2017.

[2] Adversarial Learning for Semi-Supervised Semantic Segmentation
      Wei-Chih Hung, Yi-Hsuan Tsai, Yan-Ting Liou, Yen-Yu Lin, and Ming-Hsuan Yang. BMVC 2018.

[3] S4L: Self-Supervised Semi-Supervised Learning
      Xiaohua Zhai, Avital Oliver, Alexander Kolesnikov, and Lucas Beyer. ICCV 2019.

[4] Semi-Supervised Semantic Segmentation with Cross-Consistency Training
      Yassine Ouali, Céline Hudelot, and Myriam Tami. CVPR 2020.

[5] Guided Collaborative Training for Pixel-wise Semi-Supervised Learning
      Zhanghan Ke, Di Qiu, Kaican Li, Qiong Yan, and Rynson W.H. Lau. ECCV 2020.

[6] Semi-Supervised Semantic Segmentation Needs Strong, Varied Perturbations
      Geoff French, Samuli Laine, Timo Aila, Michal Mackiewicz, and Graham Finlayson. BMVC 2020.

Installation

Please refer to the Installation document.

Getting Started

Please follow the Getting Started document to run the provided demo tasks.

Tutorials

We provide the API document and some tutorials for using PixelSSL.

License

This project is released under the Apache 2.0 license.

Acknowledgement

We thank City University of Hong Kong and SenseTime for their support to this project.

Citation

This project is extended from our ECCV 2020 paper Guided Collaborative Training for Pixel-wise Semi-Supervised Learning (GCT). If this codebase or our method helps your research, please cite:

@InProceedings{ke2020gct,
  author = {Ke, Zhanghan and Qiu, Di and Li, Kaican and Yan, Qiong and Lau, Rynson W.H.},
  title = {Guided Collaborative Training for Pixel-wise Semi-Supervised Learning},
  booktitle = {European Conference on Computer Vision (ECCV)},
  month = {August},
  year = {2020},
}

Contact

This project is currently maintained by Zhanghan Ke (@ZHKKKe).
If you have any questions, please feel free to contact [email protected].

Comments
  • Question about the input size of images during inference time.

    Question about the input size of images during inference time.

    Dear author: I have a question about the inference setting. In this section: https://github.com/ZHKKKe/PixelSSL/blob/2e85e12c1db5b24206bfbbf2d7f6348ae82b2105/task/sseg/data.py#L102

        def _val_prehandle(self, image, label):
            sample = {self.IMAGE: image, self.LABEL: label}
            composed_transforms = transforms.Compose([
                FixScaleCrop(crop_size=self.args.im_size),
                Normalize(mean=(0.485, 0.456, 0.406), std=(0.229, 0.224, 0.225)),
                ToTensor()])
    
            transformed_sample = composed_transforms(sample)
    
            return transformed_sample[self.IMAGE], transformed_sample[self.LABEL]
    

    I find that you crop the image as the input and calculate the metrics on the cropped image. However, I think we should use the whole image to calculate the metric. Based on this setting, the supervised full baseline is 2~3% mIoU lower than the raw performance. Could you explain it?

    opened by charlesCXK 16
  • some questions about Paper

    some questions about Paper "Guided Collaborative Training"

    great work. Thanks for your amazing codebase. I have some questions about this paper "Guided Collaborative Training for Pixel-wise Semi-Supervised Learning"

    1.I'm wondering if I can just use max score of a pixel as an evaluation criterion without Flaw Detector in semantic segmentation task? If so, how would it work if I use score directly, have you ever done such experiment?

    1. Is Flaw Correction Constraint forcing the error to 0 to correct the result of semantic segmentation? This loss, not quite understand what it means.
    opened by czy341181 8
  • Add implementation for Semi-supervised Semantic Segmentation via Strong-weak Dual-branch Network

    Add implementation for Semi-supervised Semantic Segmentation via Strong-weak Dual-branch Network

    Thanks for your sharing and the repo is quite helpful for me to understand the work in SSL segmentation. If possible, could you add the implementation of Semi-supervised Semantic Segmentation via Strong-weak Dual-branch Network (ECCV 2020), which is a simply dual branch network. It's a quite easy and inituitive idea but I could not reproduce the results with deeplabv2. It would be great if you could add this into the repo.

    opened by syorami 5
  • CUDA out of memory

    CUDA out of memory

    Hi ZHKKKE,

    First of all, thank you for your work. Currently, I retrain the gct by PSPNet with the ResNet-101 backbone in Pascal VOC, and use the parameter of im_size=513, batch_size=4 with 4 gpus. However, i am getting the error of insufficient memory. I retrained other methods you offered by using the parameter of im_size=513, batch_size=4 with 4 gpus and can get the accuracy provided by README.md.

    I want to know how you train the gct with 4 GPUs? Save memory by changing im_size=513 to im_size=321?Or is there any other way?

    Thank you and regards

    opened by Rainfor1 4
  • A question about ASPP

    A question about ASPP

    Thanks for your great work for tackling the pixel-wise semi-supervised tasks. I am currently following it and I have the following question.

    Should the returned value of 'out' at https://github.com/ZHKKKe/PixelSSL/blob/master/task/sseg/module/deeplab_v2.py#L85 be out of the for loop? Otherwise, the ASPP only adds the outputs of dilation rates 6 and 12.

    Thanks in advance : )

    opened by tianzhuotao 3
  • More data splits of VOC

    More data splits of VOC

    Dear author: Thank you for sharing! Could you share more data splits of your ECCV paper, such as data split of 1/16, 1/4, 1/2 of VOC? We want to run experiments based on more splits and make a comparison with the numbers reported in the paper. Thank you!

    opened by charlesCXK 2
  • FlawDetector In 3D version

    FlawDetector In 3D version

    Hi there, thanks for your work, it's very inspiring!

    And now I want to use the job in my project, but in 3D. I found that the FlawDetector for 2D is stacked of some conv layers with kernel size is 4 stride is 1 or 2 or some stuff.

    But my input size is 256, 256 after the self.conv3_1 will cause errors. So I have to modify kernel size from 4 to 3, and now before interpolating the feature map, the x's shape is (1, 1, 8, 8, 8), but to interpolating to shape of (1, 1, 16, 256, 256), the gap between the x and the task_pred seems too large.

    But in 2D mode, I set the input is (3, 256, 256) while the num_classes is 14, the x will be interpolated from (1, 1, 8, 8) to (1, 1, 256, 256). Is is reasonable?

    Thanks a lot!

    opened by DISAPPEARED13 0
  • About the performance of PSPNet.

    About the performance of PSPNet.

    Hello, thanks for your perfect work. I have a question about the performance of PSPNet , when i use PSPNet alone in my own dataset and my own code and trainning with 1/2 samples, the miou could reach about 68%. But when I change to your code and trainningwith suponly, the miou is only 60% . Could you please tell me what may be the reason for this.

    opened by liyanping0317 1
  • Is there a bug in task/sseg/func.py  metrics?

    Is there a bug in task/sseg/func.py metrics?

    Hi, ZHKKKe, Thank you for your excellent code.

    I found a suspected bug in task/sseg/func.py.

    In the function metrics, you reset all meters named acc_str/acc_class_str/mIoU_str/fwIoU_str. if meters.has_key(acc_str): meters.reset(acc_str) if meters.has_key(acc_class_str): meters.reset(acc_class_str) if meters.has_key(mIoU_str): meters.reset(mIoU_str) if meters.has_key(fwIoU_str): meters.reset(fwIoU_str) When I test your pre-trained model deeplabv2_pascalvoc_1-8_suponly.ckpt, I found the Validation metrics logging the whole confusion matrix. Shouldn‘t we count the single image acc/mIoU independently?

    I'm not sure whether my speculation is right, could you help me?

    opened by HHuiwen 1
  • Splits of Cityscapes ...

    Splits of Cityscapes ...

    Hi, thanks for your nice work!

    I have noticed that you only give us the data split of VOC2012, will you offer us the splits of cityscapes dataset?

    And from your scripts, The labeled data used in your experiments only samples in the order of names from the txt file, https://github.com/ZHKKKe/PixelSSL/blob/ce192034355ae6a77e47d2983d9c9242df60802a/task/sseg/dataset/PascalVOC/tool/random_sublabeled_samples.py#L21 labeled_num = int(len(samples) * labeled_ratio + 1) labeled_list = samples[:labeled_num]

    opened by ghost 3
Releases(v0.1.4)
Owner
Zhanghan Ke
PhD Candidate @ CityU
Zhanghan Ke
Research on Tabular Deep Learning (Python package & papers)

Research on Tabular Deep Learning For paper implementations, see the section "Papers and projects". rtdl is a PyTorch-based package providing a user-f

Yura Gorishniy 510 Dec 30, 2022
State-to-Distribution (STD) Model

State-to-Distribution (STD) Model In this repository we provide exemplary code on how to construct and evaluate a state-to-distribution (STD) model fo

<a href=[email protected]"> 2 Apr 07, 2022
Starter code for the ICCV 2021 paper, 'Detecting Invisible People'

Detecting Invisible People [ICCV 2021 Paper] [Website] Tarasha Khurana, Achal Dave, Deva Ramanan Introduction This repository contains code for Detect

Tarasha Khurana 28 Sep 16, 2022
Have you ever wondered how cool it would be to have your own A.I

Have you ever wondered how cool it would be to have your own A.I. assistant Imagine how easier it would be to send emails without typing a single word, doing Wikipedia searches without opening web br

Harsh Gupta 1 Nov 09, 2021
LieTransformer: Equivariant Self-Attention for Lie Groups

LieTransformer This repository contains the implementation of the LieTransformer used for experiments in the paper LieTransformer: Equivariant Self-At

OxCSML (Oxford Computational Statistics and Machine Learning) 50 Dec 28, 2022
Full Transformer Framework for Robust Point Cloud Registration with Deep Information Interaction

Full Transformer Framework for Robust Point Cloud Registration with Deep Information Interaction. arxiv This repository contains python scripts for tr

12 Dec 12, 2022
Lightwood is Legos for Machine Learning.

Lightwood is like Legos for Machine Learning. A Pytorch based framework that breaks down machine learning problems into smaller blocks that can be glu

MindsDB Inc 312 Jan 08, 2023
MultiTaskLearning - Multi Task Learning for 3D segmentation

Multi Task Learning for 3D segmentation Perception stack of an Autonomous Drivin

2 Sep 22, 2022
Code release for "COTR: Correspondence Transformer for Matching Across Images"

COTR: Correspondence Transformer for Matching Across Images This repository contains the inference code for COTR. We plan to release the training code

UBC Computer Vision Group 360 Jan 06, 2023
Implementation of our paper "Video Playback Rate Perception for Self-supervised Spatio-Temporal Representation Learning".

PRP Introduction This is the implementation of our paper "Video Playback Rate Perception for Self-supervised Spatio-Temporal Representation Learning".

yuanyao366 39 Dec 29, 2022
Voice Conversion Using Speech-to-Speech Neuro-Style Transfer

This repo contains the official implementation of the VAE-GAN from the INTERSPEECH 2020 paper Voice Conversion Using Speech-to-Speech Neuro-Style Transfer.

Ehab AlBadawy 93 Jan 05, 2023
Forecasting for knowable future events using Bayesian informative priors (forecasting with judgmental-adjustment).

What is judgyprophet? judgyprophet is a Bayesian forecasting algorithm based on Prophet, that enables forecasting while using information known by the

AstraZeneca 56 Oct 26, 2022
Unsupervised captioning - Code for Unsupervised Image Captioning

Unsupervised Image Captioning by Yang Feng, Lin Ma, Wei Liu, and Jiebo Luo Introduction Most image captioning models are trained using paired image-se

Yang Feng 207 Dec 24, 2022
Diffusion Probabilistic Models for 3D Point Cloud Generation (CVPR 2021)

Diffusion Probabilistic Models for 3D Point Cloud Generation [Paper] [Code] The official code repository for our CVPR 2021 paper "Diffusion Probabilis

Shitong Luo 323 Jan 05, 2023
Awesome Long-Tailed Learning

Awesome Long-Tailed Learning This repo pays specially attention to the long-tailed distribution, where labels follow a long-tailed or power-law distri

Stomach_ache 284 Jan 06, 2023
ONNX-PackNet-SfM: Python scripts for performing monocular depth estimation using the PackNet-SfM model in ONNX

Python scripts for performing monocular depth estimation using the PackNet-SfM model in ONNX

Ibai Gorordo 14 Dec 09, 2022
Curvlearn, a Tensorflow based non-Euclidean deep learning framework.

English | 简体中文 Why Non-Euclidean Geometry Considering these simple graph structures shown below. Nodes with same color has 2-hop distance whereas 1-ho

Alibaba 123 Dec 12, 2022
This repo includes our code for evaluating and improving transferability in domain generalization (NeurIPS 2021)

Transferability for domain generalization This repo is for evaluating and improving transferability in domain generalization (NeurIPS 2021), based on

gordon 9 Nov 29, 2022
A tool for making map images from OpenTTD save games

OpenTTD Surveyor A tool for making map images from OpenTTD save games. This is not part of the main OpenTTD codebase, nor is it ever intended to be pa

Aidan Randle-Conde 9 Feb 15, 2022
Improving Generalization Bounds for VC Classes Using the Hypergeometric Tail Inversion

Improving Generalization Bounds for VC Classes Using the Hypergeometric Tail Inversion Preface This directory provides an implementation of the algori

Jean-Samuel Leboeuf 0 Nov 03, 2021