VID-Fusion: Robust Visual-Inertial-Dynamics Odometry for Accurate External Force Estimation

Overview

VID-Fusion

VID-Fusion: Robust Visual-Inertial-Dynamics Odometry for Accurate External Force Estimation

Authors: Ziming Ding , Tiankai Yang, Kunyi Zhang, Chao Xu, and Fei Gao from the ZJU FAST Lab.

0. Overview

VID-Fusion is a work to estimate odometry and external force simultaneously by a tightly coupled Visual-Inertial-Dynamics state estimator for multirotors. Just like VIMO, we formulate a new factor in the optimization-based visual-inertial odometry system VINS-Mono. But we compare the dynamics model with the imu measurements to observe the external force and formulate the external force preintegration like imu preintegration. So, the thrust and external force can be added into the classical VIO system such as VINS-Mono as a new factor.

We present:

  • An external force preintegration term for back-end optimization.
  • A complete, robust, tightly-coupled Visual-Inertial-Dynamics state estimator.
  • Demonstration of robust and accurate external force and pose estimation.

Simultaneously estimating the external force and odometry within a sliding window.

Related Paper: VID-Fusion: Robust Visual-Inertial-Dynamics Odometry for Accurate External Force Estimation, Ziming Ding, Tiankai Yang, Kunyi Zhang, Chao Xu, and Fei Gao, ICRA 2021.

Video Links: bilibili or Youtube.

1. Prerequisites

Our software is developed and only tested in Ubuntu 16.04, ROS Kinetic (ROS Installation), OpenCV 3.3.1.

Ceres Solver (Ceres Installation) is needed.

2. Build on ROS

cd your_catkin_ws/src
git clone [email protected]:ZJU-FAST-Lab/VID-Fusion.git
cd ..
catkin_make  --pkg quadrotor_msgs  # pre-build msg
catkin_make

3. Run in vid-dataset

cd your_catkin_ws
source ~/catkin_ws/devel/setup.bash
roslaunch vid_estimator vid_realworld.launch
roslaunch benchmark_publisher publish.launch #(option)
rosbag play YOUR_PATH_TO_DATASET

We provide the experiment data for testing, in which the vid-experiment-dataset is in ros bag type. The dataset provides two kinds of scenarios: tarj8_with_gt and line_with_force_gt.

  • tarj8_with_gt is a dataset with odometry groundtruth. The drone flys with a payload.

  • line_with_force_gt is a dataset with external force groundtruth. The drone connects a force sensor via a elastic rope.

A new visual-inertial-dynamics dataset with richer scenarios is provided in VID-Dataset.

The drone information should be provided in VID-Fusion/config/experiments/drone.yaml. It is noticed that you should use the proper parameter of the drone such as the mass and the thrust_coefficient, according to the related bag file.

As for the benchmark comparison, we naively edit the benchmark_publisher from VINS-Mono to compare the estimated path, and add a external force visualization about the estimated force and the ground truth force. The ground truth data is in VID-Fusion/benchmark_publisher/data. You should switch path or force comparison by cur_kind in publish.launch (0 for path comparison and 1 for force comparison).

As for model identification, we collect the hovering data for identification. For the two data bags, tarj8_with_gt and line_with_force_gt, we also provide the hovering data for thrust_coefficient identification. After system identification, you should copy the thrust_coefficient result to VID-Fusion/config/experiments/drone.yaml

roslaunch system_identification system_identify.launch 
rosbag play YOUR_PATH_TO_DATASET
#copy the thrust_coefficient result to VID-Fusion/config/experiments/drone.yaml

The external force is the resultant force except for rotor thrust and aircraft gravity. You can set force_wo_rotor_drag as 1 in config file to subtract the rotor drag force from the estimated force. And the related drag coefficient k_d_x and k_d_y should be given.

4. Acknowledgements

We replace the model preintegration and dynamics factor from VIMO, and formulate the proposed dynamics and external force factor atop the source code of VIMO and VINS-Mono. The ceres solver is used for back-end non-linear optimization, and DBoW2 for loop detection, and a generic camera model. The monocular initialization, online extrinsic calibration, failure detection and recovery, loop detection, and global pose graph optimization, map merge, pose graph reuse, online temporal calibration, rolling shutter support are also from VINS-Mono.

5. Licence

The source code is released under GPLv3 license.

6. Maintaince

For any technical issues, please contact Ziming Ding ([email protected]) or Fei GAO ([email protected]).

For commercial inquiries, please contact Fei GAO ([email protected]).

Owner
ZJU FAST Lab
ZJU FAST Lab
Unofficial pytorch implementation of the paper "Dynamic High-Pass Filtering and Multi-Spectral Attention for Image Super-Resolution"

DFSA Unofficial pytorch implementation of the ICCV 2021 paper "Dynamic High-Pass Filtering and Multi-Spectral Attention for Image Super-Resolution" (p

2 Nov 15, 2021
A mini lib that implements several useful functions binding to PyTorch in C++.

Torch-gather A mini library that implements several useful functions binding to PyTorch in C++. What does gather do? Why do we need it? When dealing w

maxwellzh 8 Sep 07, 2022
This is the official PyTorch implementation of the paper "TransFG: A Transformer Architecture for Fine-grained Recognition" (Ju He, Jie-Neng Chen, Shuai Liu, Adam Kortylewski, Cheng Yang, Yutong Bai, Changhu Wang, Alan Yuille).

TransFG: A Transformer Architecture for Fine-grained Recognition Official PyTorch code for the paper: TransFG: A Transformer Architecture for Fine-gra

Ju He 307 Jan 03, 2023
A pytorch implementation of faster RCNN detection framework (Use detectron2, it's a masterpiece)

Notice(2019.11.2) This repo was built back two years ago when there were no pytorch detection implementation that can achieve reasonable performance.

Ruotian(RT) Luo 1.8k Jan 01, 2023
A Differentiable Recipe for Learning Visual Non-Prehensile Planar Manipulation

A Differentiable Recipe for Learning Visual Non-Prehensile Planar Manipulation This repository contains the source code of the paper A Differentiable

Bernardo Aceituno 2 May 05, 2022
Multi-Stage Spatial-Temporal Convolutional Neural Network (MS-GCN)

Multi-Stage Spatial-Temporal Convolutional Neural Network (MS-GCN) This code implements the skeleton-based action segmentation MS-GCN model from Autom

Benjamin Filtjens 8 Nov 29, 2022
Recognize Handwritten Digits using Deep Learning on the browser itself.

MNIST on the Web An attempt to predict MNIST handwritten digits from my PyTorch model from the browser (client-side) and not from the server, with the

Harjyot Bagga 7 May 28, 2022
Constrained Language Models Yield Few-Shot Semantic Parsers

Constrained Language Models Yield Few-Shot Semantic Parsers This repository contains tools and instructions for reproducing the experiments in the pap

Microsoft 43 Nov 23, 2022
NLMpy - A Python package to create neutral landscape models

NLMpy is a Python package for the creation of neutral landscape models that are widely used by landscape ecologists to model ecological patterns

Manaaki Whenua – Landcare Research 1 Oct 08, 2022
Code repository of the paper Neural circuit policies enabling auditable autonomy published in Nature Machine Intelligence

Neural Circuit Policies Enabling Auditable Autonomy Online access via SharedIt Neural Circuit Policies (NCPs) are designed sparse recurrent neural net

8 Jan 07, 2023
Evolving neural network parameters in JAX.

Evolving Neural Networks in JAX This repository holds code displaying techniques for applying evolutionary network training strategies in JAX. Each sc

Trevor Thackston 6 Feb 12, 2022
Weakly Supervised Dense Event Captioning in Videos, i.e. generating multiple sentence descriptions for a video in a weakly-supervised manner.

WSDEC This is the official repo for our NeurIPS paper Weakly Supervised Dense Event Captioning in Videos. Description Repo directories ./: global conf

Melon(Xuguang Duan) 96 Nov 01, 2022
Planar Prior Assisted PatchMatch Multi-View Stereo

ACMP [News] The code for ACMH is released!!! [News] The code for ACMM is released!!! About This repository contains the code for the paper Planar Prio

Qingshan Xu 127 Dec 31, 2022
The Ludii general game system, developed as part of the ERC-funded Digital Ludeme Project.

The Ludii General Game System Ludii is a general game system being developed as part of the ERC-funded Digital Ludeme Project (DLP). This repository h

Digital Ludeme Project 50 Jan 04, 2023
Reinforcement Learning for finance

Reinforcement Learning for Finance We apply reinforcement learning for stock trading. Fetch Data Example import utils # fetch symbols from yahoo fina

Tomoaki Fujii 159 Jan 03, 2023
HandTailor: Towards High-Precision Monocular 3D Hand Recovery

HandTailor This repository is the implementation code and model of the paper "HandTailor: Towards High-Precision Monocular 3D Hand Recovery" (arXiv) G

Lv Jun 113 Jan 06, 2023
Easy-to-use library to boost AI inference leveraging state-of-the-art optimization techniques.

NEW RELEASE How Nebullvm Works • Tutorials • Benchmarks • Installation • Get Started • Optimization Examples Discord | Website | LinkedIn | Twitter Ne

Nebuly 1.7k Dec 31, 2022
Near-Optimal Sparse Allreduce for Distributed Deep Learning (published in PPoPP'22)

Near-Optimal Sparse Allreduce for Distributed Deep Learning (published in PPoPP'22) Ok-Topk is a scheme for distributed training with sparse gradients

Shigang Li 9 Oct 29, 2022
A Dying Light 2 (DL2) PAKFile Utility for Modders and Mod Makers.

Dying Light 2 PAKFile Utility A Dying Light 2 (DL2) PAKFile Utility for Modders and Mod Makers. This tool aims to make PAKFile (.pak files) modding a

RHQ Online 12 Aug 26, 2022
Code for "The Box Size Confidence Bias Harms Your Object Detector"

The Box Size Confidence Bias Harms Your Object Detector - Code Disclaimer: This repository is for research purposes only. It is designed to maintain r

Johannes G. 24 Dec 07, 2022