Class-imbalanced / Long-tailed ensemble learning in Python. Modular, flexible, and extensible

Overview

IMBENS: Class-imbalanced Ensemble Learning in Python

Documentation Status

Language: English | Chinese/中文

Links: Documentation | Gallery | PyPI | Changelog | Source | Download | 知乎/Zhihu | arXiv

Paper: IMBENS: Ensemble Class-imbalanced Learning in Python

imbalanced-ensemble (IMBENS, imported as imbalanced_ensemble) is a Python toolbox for quick implementation, modification, evaluation, and visualization of ensemble learning algorithms for class-imbalanced data. The problem of learning from imbalanced data is known as imbalanced learning or long-tail learning (under multi-class scenario). See related papers/libraries/resources here.

Currently (v0.1), IMBENS includes more than 15 ensemble imbalanced learning algorithms, from the classical SMOTEBoost (2003), RUSBoost (2010) to recent Self-paced Ensemble (2020), from resampling to cost-sensitive learning. More algorithms will be included in the future. We also provide detailed documentation and examples across various algorithms. See full list of implemented methods here.

  • Please leave a STAR if you like this project!
  • If you find any bugs or have any suggestions, please consider opening an issue or a PR.
  • We would greatly appreciate your contribution, and you will appear in the Contributors !

IMBENS is featured for:

  • 🍎 Unified, easy-to-use APIs, detailed documentation and examples.
  • 🍎 Capable for out-of-the-box multi-class imbalanced (long-tailed) learning.
  • 🍎 Optimized performance with parallelization when possible using joblib.
  • 🍎 Powerful, customizable, interactive training logging and visualizer.
  • 🍎 Full compatibility with other popular packages like scikit-learn and imbalanced-learn.

API Demo:

# Train an SPE classifier
from imbalanced_ensemble.ensemble import SelfPacedEnsembleClassifier
clf = SelfPacedEnsembleClassifier(random_state=42)
clf.fit(X_train, y_train)

# Predict with an SPE classifier
y_pred = clf.predict(X_test)

If you find IMBENS helpful in your work or research, we would greatly appreciate citations to the following paper:

@article{liu2021imbens,
  title={IMBENS: Ensemble Class-imbalanced Learning in Python},
  author={Liu, Zhining and Wei, Zhepei and Yu, Erxin and Huang, Qiang and Guo, Kai and Yu, Boyang and Cai, Zhaonian and Ye, Hangting and Cao, Wei and Bian, Jiang and Wei, Pengfei and Jiang, Jing and Chang, Yi},
  journal={arXiv preprint arXiv:2111.12776},
  year={2021}
}

Table of Contents

Installation

It is recommended to use pip for installation.
Please make sure the latest version is installed to avoid potential problems:

$ pip install imbalanced-ensemble            # normal install
$ pip install --upgrade imbalanced-ensemble  # update if needed

Or you can install imbalanced-ensemble by clone this repository:

$ git clone https://github.com/ZhiningLiu1998/imbalanced-ensemble.git
$ cd imbalanced-ensemble
$ pip install .

imbalanced-ensemble requires following dependencies:

Highlights

  • 🍎 Unified, easy-to-use API design.
    All ensemble learning methods implemented in IMBENS share a unified API design. Similar to sklearn, all methods have functions (e.g., fit(), predict(), predict_proba()) that allow users to deploy them with only a few lines of code.
  • 🍎 Extended functionalities, wider application scenarios.
    All methods in IMBENS are ready for multi-class imbalanced classification. We extend binary ensemble imbalanced learning methods to get them to work under the multi-class scenario. Additionally, for supported methods, we provide more training options like class-wise resampling control, balancing scheduler during the ensemble training process, etc.
  • 🍎 Detailed training log, quick intuitive visualization.
    We provide additional parameters (e.g., eval_datasets, eval_metrics, training_verbose) in fit() for users to control the information they want to monitor during the ensemble training. We also implement an EnsembleVisualizer to quickly visualize the ensemble estimator(s) for providing further information/conducting comparison. See an example here.
  • 🍎 Wide compatiblilty.
    IMBENS is designed to be compatible with scikit-learn (sklearn) and also other compatible projects like imbalanced-learn. Therefore, users can take advantage of various utilities from the sklearn community for data processing/cross-validation/hyper-parameter tuning, etc.

List of implemented methods

Currently (v0.1.3, 2021/06), 16 ensemble imbalanced learning methods were implemented:
(Click to jump to the document page)

Note: imbalanced-ensemble is still under development, please see API reference for the latest list.

5-min Quick Start with IMBENS

Here, we provide some quick guides to help you get started with IMBENS.
We strongly encourage users to check out the example gallery for more comprehensive usage examples, which demonstrate many advanced features of IMBENS.

A minimal working example

Taking self-paced ensemble [1] as an example, it only requires less than 10 lines of code to deploy it:

>>> from imbalanced_ensemble.ensemble import SelfPacedEnsembleClassifier
>>> from sklearn.datasets import make_classification
>>> from sklearn.model_selection import train_test_split
>>> 
>>> X, y = make_classification(n_samples=1000, n_classes=3,
...                            n_informative=4, weights=[0.2, 0.3, 0.5],
...                            random_state=0)
>>> X_train, X_test, y_train, y_test = train_test_split(
...                            X, y, test_size=0.2, random_state=42)
>>> clf = SelfPacedEnsembleClassifier(random_state=0)
>>> clf.fit(X_train, y_train)
SelfPacedEnsembleClassifier(...)
>>> clf.predict(X_test)  
array([...])

Visualize ensemble classifiers

The imbalanced_ensemble.visualizer sub-module provide an ImbalancedEnsembleVisualizer. It can be used to visualize the ensemble estimator(s) for further information or comparison. Please refer to visualizer documentation and examples for more details.

Fit an ImbalancedEnsembleVisualizer

from imbalanced_ensemble.ensemble import SelfPacedEnsembleClassifier
from imbalanced_ensemble.ensemble import RUSBoostClassifier
from imbalanced_ensemble.ensemble import EasyEnsembleClassifier
from sklearn.tree import DecisionTreeClassifier

# Fit ensemble classifiers
init_kwargs = {'base_estimator': DecisionTreeClassifier()}
ensembles = {
    'spe': SelfPacedEnsembleClassifier(**init_kwargs).fit(X_train, y_train),
    'rusboost': RUSBoostClassifier(**init_kwargs).fit(X_train, y_train),
    'easyens': EasyEnsembleClassifier(**init_kwargs).fit(X_train, y_train),
}

# Fit visualizer
from imbalanced_ensemble.visualizer import ImbalancedEnsembleVisualizer
visualizer = ImbalancedEnsembleVisualizer().fit(ensembles=ensembles)

Plot performance curves

fig, axes = visualizer.performance_lineplot()

Plot confusion matrices

fig, axes = visualizer.confusion_matrix_heatmap()

Customizing training log

All ensemble classifiers in IMBENS support customizable training logging. The training log is controlled by 3 parameters eval_datasets, eval_metrics, and training_verbose of the fit() method. Read more details in the fit documentation.

Enable auto training log

clf.fit(..., train_verbose=True)
┏━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┓
┃             ┃                          ┃            Data: train             ┃
┃ #Estimators ┃    Class Distribution    ┃               Metric               ┃
┃             ┃                          ┃  acc    balanced_acc   weighted_f1 ┃
┣━━━━━━━━━━━━━╋━━━━━━━━━━━━━━━━━━━━━━━━━━╋━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┫
┃      1      ┃ {0: 150, 1: 150, 2: 150} ┃ 0.838      0.877          0.839    ┃
┃      5      ┃ {0: 150, 1: 150, 2: 150} ┃ 0.924      0.949          0.924    ┃
┃     10      ┃ {0: 150, 1: 150, 2: 150} ┃ 0.954      0.970          0.954    ┃
┃     15      ┃ {0: 150, 1: 150, 2: 150} ┃ 0.979      0.986          0.979    ┃
┃     20      ┃ {0: 150, 1: 150, 2: 150} ┃ 0.990      0.993          0.990    ┃
┃     25      ┃ {0: 150, 1: 150, 2: 150} ┃ 0.994      0.996          0.994    ┃
┃     30      ┃ {0: 150, 1: 150, 2: 150} ┃ 0.988      0.992          0.988    ┃
┃     35      ┃ {0: 150, 1: 150, 2: 150} ┃ 0.999      0.999          0.999    ┃
┃     40      ┃ {0: 150, 1: 150, 2: 150} ┃ 0.995      0.997          0.995    ┃
┃     45      ┃ {0: 150, 1: 150, 2: 150} ┃ 0.995      0.997          0.995    ┃
┃     50      ┃ {0: 150, 1: 150, 2: 150} ┃ 0.993      0.995          0.993    ┃
┣━━━━━━━━━━━━━╋━━━━━━━━━━━━━━━━━━━━━━━━━━╋━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┫
┃    final    ┃ {0: 150, 1: 150, 2: 150} ┃ 0.993      0.995          0.993    ┃
┗━━━━━━━━━━━━━┻━━━━━━━━━━━━━━━━━━━━━━━━━━┻━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┛

Customize granularity and content of the training log

clf.fit(..., 
        train_verbose={
            'granularity': 10,
            'print_distribution': False,
            'print_metrics': True,
        })
Click to view example output
┏━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┓
┃             ┃            Data: train             ┃
┃ #Estimators ┃               Metric               ┃
┃             ┃  acc    balanced_acc   weighted_f1 ┃
┣━━━━━━━━━━━━━╋━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┫
┃      1      ┃ 0.964      0.970          0.964    ┃
┃     10      ┃ 1.000      1.000          1.000    ┃
┃     20      ┃ 1.000      1.000          1.000    ┃
┃     30      ┃ 1.000      1.000          1.000    ┃
┃     40      ┃ 1.000      1.000          1.000    ┃
┃     50      ┃ 1.000      1.000          1.000    ┃
┣━━━━━━━━━━━━━╋━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┫
┃    final    ┃ 1.000      1.000          1.000    ┃
┗━━━━━━━━━━━━━┻━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┛

Add evaluation dataset(s)

  clf.fit(..., 
          eval_datasets={
              'valid': (X_valid, y_valid)
          })
Click to view example output
┏━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┓
┃             ┃            Data: train             ┃            Data: valid             ┃
┃ #Estimators ┃               Metric               ┃               Metric               ┃
┃             ┃  acc    balanced_acc   weighted_f1 ┃  acc    balanced_acc   weighted_f1 ┃
┣━━━━━━━━━━━━━╋━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━╋━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┫
┃      1      ┃ 0.939      0.961          0.940    ┃ 0.935      0.933          0.936    ┃
┃     10      ┃ 1.000      1.000          1.000    ┃ 0.971      0.974          0.971    ┃
┃     20      ┃ 1.000      1.000          1.000    ┃ 0.982      0.981          0.982    ┃
┃     30      ┃ 1.000      1.000          1.000    ┃ 0.983      0.983          0.983    ┃
┃     40      ┃ 1.000      1.000          1.000    ┃ 0.983      0.982          0.983    ┃
┃     50      ┃ 1.000      1.000          1.000    ┃ 0.983      0.982          0.983    ┃
┣━━━━━━━━━━━━━╋━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━╋━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┫
┃    final    ┃ 1.000      1.000          1.000    ┃ 0.983      0.982          0.983    ┃
┗━━━━━━━━━━━━━┻━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┻━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┛

Customize evaluation metric(s)

from sklearn.metrics import accuracy_score, f1_score
clf.fit(..., 
        eval_metrics={
            'acc': (accuracy_score, {}),
            'weighted_f1': (f1_score, {'average':'weighted'}),
        })
Click to view example output
┏━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━━━━┓
┃             ┃     Data: train      ┃     Data: valid      ┃
┃ #Estimators ┃        Metric        ┃        Metric        ┃
┃             ┃  acc    weighted_f1  ┃  acc    weighted_f1  ┃
┣━━━━━━━━━━━━━╋━━━━━━━━━━━━━━━━━━━━━━╋━━━━━━━━━━━━━━━━━━━━━━┫
┃      1      ┃ 0.942      0.961     ┃ 0.919      0.936     ┃
┃     10      ┃ 1.000      1.000     ┃ 0.976      0.976     ┃
┃     20      ┃ 1.000      1.000     ┃ 0.977      0.977     ┃
┃     30      ┃ 1.000      1.000     ┃ 0.981      0.980     ┃
┃     40      ┃ 1.000      1.000     ┃ 0.980      0.979     ┃
┃     50      ┃ 1.000      1.000     ┃ 0.981      0.980     ┃
┣━━━━━━━━━━━━━╋━━━━━━━━━━━━━━━━━━━━━━╋━━━━━━━━━━━━━━━━━━━━━━┫
┃    final    ┃ 1.000      1.000     ┃ 0.981      0.980     ┃
┗━━━━━━━━━━━━━┻━━━━━━━━━━━━━━━━━━━━━━┻━━━━━━━━━━━━━━━━━━━━━━┛

About imbalanced learning

Class-imbalance (also known as the long-tail problem) is the fact that the classes are not represented equally in a classification problem, which is quite common in practice. For instance, fraud detection, prediction of rare adverse drug reactions and prediction gene families. Failure to account for the class imbalance often causes inaccurate and decreased predictive performance of many classification algorithms. Imbalanced learning aims to tackle the class imbalance problem to learn an unbiased model from imbalanced data.

For more resources on imbalanced learning, please refer to awesome-imbalanced-learning.

Acknowledgements

Many samplers and utilities are adapted from imbalanced-learn, which is an amazing project!

References

# Reference
[1] Zhining Liu, Wei Cao, Zhifeng Gao, Jiang Bian, Hechang Chen, Yi Chang, and Tie-Yan Liu. 2019. Self-paced Ensemble for Highly Imbalanced Massive Data Classification. 2020 IEEE 36th International Conference on Data Engineering (ICDE). IEEE, 2020, pp. 841-852.
[2] X.-Y. Liu, J. Wu, and Z.-H. Zhou, Exploratory undersampling for class-imbalance learning. IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics), vol. 39, no. 2, pp. 539–550, 2009.
[3] Chen, Chao, Andy Liaw, and Leo Breiman. “Using random forest to learn imbalanced data.” University of California, Berkeley 110 (2004): 1-12.
[4] C. Seiffert, T. M. Khoshgoftaar, J. Van Hulse, and A. Napolitano, Rusboost: A hybrid approach to alleviating class imbalance. IEEE Transactions on Systems, Man, and Cybernetics-Part A: Systems and Humans, vol. 40, no. 1, pp. 185–197, 2010.
[5] Maclin, R., & Opitz, D. (1997). An empirical evaluation of bagging and boosting. AAAI/IAAI, 1997, 546-551.
[6] N. V. Chawla, A. Lazarevic, L. O. Hall, and K. W. Bowyer, Smoteboost: Improving prediction of the minority class in boosting. in European conference on principles of data mining and knowledge discovery. Springer, 2003, pp. 107–119
[7] S. Wang and X. Yao, Diversity analysis on imbalanced data sets by using ensemble models. in 2009 IEEE Symposium on Computational Intelligence and Data Mining. IEEE, 2009, pp. 324–331.
[8] Fan, W., Stolfo, S. J., Zhang, J., & Chan, P. K. (1999, June). AdaCost: misclassification cost-sensitive boosting. In Icml (Vol. 99, pp. 97-105).
[9] Shawe-Taylor, G. K. J., & Karakoulas, G. (1999). Optimizing classifiers for imbalanced training sets. Advances in neural information processing systems, 11(11), 253.
[10] Viola, P., & Jones, M. (2001). Fast and robust classification using asymmetric adaboost and a detector cascade. Advances in Neural Information Processing System, 14.
[11] Freund, Y., & Schapire, R. E. (1997). A decision-theoretic generalization of on-line learning and an application to boosting. Journal of computer and system sciences, 55(1), 119-139.
[12] Breiman, L. (1996). Bagging predictors. Machine learning, 24(2), 123-140.
[13] Guillaume Lemaître, Fernando Nogueira, and Christos K. Aridas. Imbalanced-learn: A python toolbox to tackle the curse of imbalanced datasets in machine learning. Journal of Machine Learning Research, 18(17):1–5, 2017.

Related Projects

Check out Zhining's other open-source projects!


Self-paced Ensemble [ICDE]

GitHub stars

Meta-Sampler [NeurIPS]

GitHub stars

Imbalanced Learning [Awesome]

GitHub stars

Machine Learning [Awesome]

GitHub stars

Contributors

Thanks goes to these wonderful people (emoji key):


Zhining Liu

💻 🤔 🚧 🐛 📖

leaphan

🐛

hannanhtang

🐛

H.J.Ren

🐛

This project follows the all-contributors specification. Contributions of any kind welcome!

You might also like...
Given the names and grades for each student in a class N of students, store them in a nested list and print the name(s) of any student(s) having the second lowest grade.

Hackerank-Nested-List Given the names and grades for each student in a class N of students, store them in a nested list and print the name(s) of any s

This repo implements a Topological SLAM: Deep Visual Odometry with Long Term Place Recognition (Loop Closure Detection)
This repo implements a Topological SLAM: Deep Visual Odometry with Long Term Place Recognition (Loop Closure Detection)

This repo implements a topological SLAM system. Deep Visual Odometry (DF-VO) and Visual Place Recognition are combined to form the topological SLAM system.

Multiple Linear Regression using the LinearRegression class from sklearn.linear_model library

Multiple-Linear-Regression-master - A python program to implement Multiple Linear Regression using the LinearRegression class from sklearn.linear model library

A Python Automated Machine Learning tool that optimizes machine learning pipelines using genetic programming.
A Python Automated Machine Learning tool that optimizes machine learning pipelines using genetic programming.

Master status: Development status: Package information: TPOT stands for Tree-based Pipeline Optimization Tool. Consider TPOT your Data Science Assista

Python Extreme Learning Machine (ELM) is a machine learning technique used for classification/regression tasks.

Python Extreme Learning Machine (ELM) Python Extreme Learning Machine (ELM) is a machine learning technique used for classification/regression tasks.

MIT-Machine Learning with Python–From Linear Models to Deep Learning

MIT-Machine Learning with Python–From Linear Models to Deep Learning | One of the 5 courses in MIT MicroMasters in Statistics & Data Science Welcome t

Microsoft contributing libraries, tools, recipes, sample codes and workshop contents for machine learning & deep learning.

Microsoft contributing libraries, tools, recipes, sample codes and workshop contents for machine learning & deep learning.

A data preprocessing package for time series data. Design for machine learning and deep learning.

A data preprocessing package for time series data. Design for machine learning and deep learning.

High performance, easy-to-use, and scalable machine learning (ML) package, including linear model (LR), factorization machines (FM), and field-aware factorization machines (FFM) for Python and CLI interface.
High performance, easy-to-use, and scalable machine learning (ML) package, including linear model (LR), factorization machines (FM), and field-aware factorization machines (FFM) for Python and CLI interface.

What is xLearn? xLearn is a high performance, easy-to-use, and scalable machine learning package that contains linear model (LR), factorization machin

Comments
  • Bug :AttributeError: can't set attribute

    Bug :AttributeError: can't set attribute

    hello ,when i use the code as follow,the will be some errors, EasyEnsembleClassifier was used

    from sklearn.datasets import make_classification from sklearn.model_selection import train_test_split from sklearn.metrics import balanced_accuracy_score from sklearn.ensemble import BaggingClassifier from sklearn.tree import DecisionTreeClassifier from imbalanced_ensemble.ensemble import EasyEnsembleClassifier from collections import Counter

    X, y = make_classification(n_classes=2, class_sep=2, weights=[0.1, 0.9], n_informative=3, n_redundant=1, flip_y=0, n_features=20, n_clusters_per_class=1, n_samples=1000, random_state=10) print('Original dataset shape %s' % Counter(y))

    Original dataset shape Counter({{1: 900, 0: 100}})

    X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=0) bbc = EasyEnsembleClassifier(random_state=42) bbc.fit(X_train, y_train) EasyEnsembleClassifier(...) y_pred = bbc.predict(X_test) print(y_pred)

    Traceback (most recent call last): File "C:/Users/Administrator/PycharmProjects/pythonProject5/test-easy.py", line 16, in bbc.fit(X_train, y_train) File "C:\Users\Administrator\PycharmProjects\pythonProject5\venv\lib\site-packages\imbalanced_ensemble\utils_validation.py", line 602, in inner_f return f(**kwargs) File "C:\Users\Administrator\PycharmProjects\pythonProject5\venv\lib\site-packages\imbalanced_ensemble\ensemble\under_sampling\easy_ensemble.py", line 275, in fit return self._fit(X, y, File "C:\Users\Administrator\PycharmProjects\pythonProject5\venv\lib\site-packages\imbalanced_ensemble\utils_validation.py", line 602, in inner_f return f(**kwargs) File "C:\Users\Administrator\PycharmProjects\pythonProject5\venv\lib\site-packages\imbalanced_ensemble\ensemble_bagging.py", line 359, in fit n_samples, self.n_features = X.shape AttributeError: can't set attribute

    bug 
    opened by leaphan 8
  • EasyEnsembleClassifier用不了了

    EasyEnsembleClassifier用不了了

    根据你的在这儿https://imbalanced-ensemble.readthedocs.io/en/latest/auto_examples/classification/plot_digits.html 的代码,将分类器改成EasyEnsembleClassifier可以复现这个问题,会出现: image AttributeError: can't set attribute这个问题。

    bug 
    opened by hannanhtang 7
  • ENH add early_termination control for boosting-based methods

    ENH add early_termination control for boosting-based methods

    The early termination in sklearn.ensemble.AdaBoostClassifier may be too strict under certain scenarios (only 1 base classifier is trained), which greatly hinders the performance of boosting-based ensemble imbalanced learning methods.

    It should make more sense to add a parameter that allows the user to decide whether to enable strict early termination.

    enhancement 
    opened by ZhiningLiu1998 2
  • [BUG] Bagging-based methods do not work with base clf that do not support sample_weight

    [BUG] Bagging-based methods do not work with base clf that do not support sample_weight

    Resampling + Bagging clf (e.g., OverBagging) raises error when used with base estimators that do not support sample_weight (e.g., sklearn.KNeighborsClassifier).

    opened by ZhiningLiu1998 2
Owner
Zhining Liu
M.Sc. student at Jilin University.
Zhining Liu
A repository to index and organize the latest machine learning courses found on YouTube.

📺 ML YouTube Courses At DAIR.AI we ❤️ open education. We are excited to share some of the best and most recent machine learning courses available on

DAIR.AI 9.6k Jan 01, 2023
slim-python is a package to learn customized scoring systems for decision-making problems.

slim-python is a package to learn customized scoring systems for decision-making problems. These are simple decision aids that let users make yes-no p

Berk Ustun 37 Nov 02, 2022
This is the code repository for Interpretable Machine Learning with Python, published by Packt.

Interpretable Machine Learning with Python, published by Packt

Packt 299 Jan 02, 2023
A library to generate synthetic time series data by easy-to-use factors and generator

timeseries-generator This repository consists of a python packages that generates synthetic time series dataset in a generic way (under /timeseries_ge

Nike Inc. 87 Dec 20, 2022
The Ultimate FREE Machine Learning Study Plan

The Ultimate FREE Machine Learning Study Plan

Patrick Loeber (Python Engineer) 2.5k Jan 05, 2023
Houseprices - Predict sales prices and practice feature engineering, RFs, and gradient boosting

House Prices - Advanced Regression Techniques Predicting House Prices with Machine Learning This project is build to enhance my knowledge about machin

1 Jan 01, 2022
Optimal Randomized Canonical Correlation Analysis

ORCCA Optimal Randomized Canonical Correlation Analysis This project is for the python version of ORCCA algorithm. It depends on Numpy for matrix calc

Yinsong Wang 1 Nov 21, 2021
Banpei is a Python package of the anomaly detection.

Banpei Banpei is a Python package of the anomaly detection. Anomaly detection is a technique used to identify unusual patterns that do not conform to

Hirofumi Tsuruta 282 Jan 03, 2023
Responsible Machine Learning with Python

Examples of techniques for training interpretable ML models, explaining ML models, and debugging ML models for accuracy, discrimination, and security.

ph_ 624 Jan 06, 2023
A classification model capable of accurately predicting the price of secondhand cars

The purpose of this project is create a classification model capable of accurately predicting the price of secondhand cars. The data used for model building is open source and has been added to this

Akarsh Singh 2 Sep 13, 2022
JMP is a Mixed Precision library for JAX.

Mixed precision training [0] is a technique that mixes the use of full and half precision floating point numbers during training to reduce the memory bandwidth requirements and improve the computatio

DeepMind 108 Dec 31, 2022
Forecasting prices using Facebook/Meta's Prophet model

CryptoForecasting using Machine and Deep learning (Part 1) CryptoForecasting using Machine Learning The main aspect of predicting the stock-related da

1 Nov 27, 2021
Python module for performing linear regression for data with measurement errors and intrinsic scatter

Linear regression for data with measurement errors and intrinsic scatter (BCES) Python module for performing robust linear regression on (X,Y) data po

Rodrigo Nemmen 56 Sep 27, 2022
Graphsignal is a machine learning model monitoring platform.

Graphsignal is a machine learning model monitoring platform. It helps ML engineers, MLOps teams and data scientists to quickly address issues with data and models as well as proactively analyze model

Graphsignal 143 Dec 05, 2022
Data from "Datamodels: Predicting Predictions with Training Data"

Data from "Datamodels: Predicting Predictions with Training Data" Here we provid

Madry Lab 51 Dec 09, 2022
MLR - Machine Learning Research

Machine Learning Research 1. Project Topic 1.1. Exsiting research Benmark: https://paperswithcode.com/sota ACL anthology for NLP papers: http://www.ac

Charles 69 Oct 20, 2022
The Simpsons and Machine Learning: What makes an Episode Great?

The Simpsons and Machine Learning: What makes an Episode Great? Check out my Medium article on this! PROBLEM: The Simpsons has had a decline in qualit

1 Nov 02, 2021
A collection of machine learning examples and tutorials.

machine_learning_examples A collection of machine learning examples and tutorials.

LazyProgrammer.me 7.1k Jan 01, 2023
Cool Python features for machine learning that I used to be too afraid to use. Will be updated as I have more time / learn more.

python-is-cool A gentle guide to the Python features that I didn't know existed or was too afraid to use. This will be updated as I learn more and bec

Chip Huyen 3.3k Jan 05, 2023
Kaggler is a Python package for lightweight online machine learning algorithms and utility functions for ETL and data analysis.

Kaggler is a Python package for lightweight online machine learning algorithms and utility functions for ETL and data analysis. It is distributed under the MIT License.

Jeong-Yoon Lee 720 Dec 25, 2022