Faster, modernized fork of the language identification tool langid.py

Overview

py3langid

py3langid is a fork of the standalone language identification tool langid.py by Marco Lui.

Original license: BSD-2-Clause. Fork license: BSD-3-Clause.

Changes in this fork

Execution speed has been improved and the code base has been optimized for Python 3.6+:

  • Loading the module with import is now about 10x faster
  • Language detection with langid.classify is now about 5x faster

For implementation details see this blog post: How to make language detection with langid.py faster.

Usage

Drop-in replacement

  1. Install the package:
    • pip3 install py3langid (or pip where applicable)
  2. Use it:
    • with Python: import py3langid as langid
    • on the command-line: langid

With Python

Basics:

>>> import py3langid as langid

>>> text = 'This text is in English.'
# identified language and probability
>>> langid.classify(text)
('en', -56.77428913116455)
# unpack the result tuple in variables
>>> lang, prob = langid.classify(text)
# all potential languages
>>> langid.rank(text)

More options:

>>> from py3langid.langid import LanguageIdentifier, MODEL_FILE

# subset of target languages
>>> identifier = LanguageIdentifier.from_pickled_model(MODEL_FILE)
>>> identifier.set_languages(['de', 'en', 'fr'])
# this won't work well...
>>> identifier.classify('这样不好')
('en', -81.83166265487671)

# normalization of probabilities to an interval between 0 and 1
>>> identifier = LanguageIdentifier.from_pickled_model(MODEL_FILE, norm_probs=True)
>>> identifier.classify('This should be enough text.'))
('en', 1.0)

Note: the Numpy data type for the feature vector has been changed to optimize for speed. If results are inconsistent, try restoring the original setting:

>>> langid.classify(text, datatype='uint32')

On the command-line

# basic usage with probability normalization
$ echo "This should be enough text." | langid -n
('en', 1.0)

# define a subset of target languages
$ echo "This won't be recognized properly." | langid -n -l fr,it,tr
('it', 0.9703832808613264)

Legacy documentation

The docs below are provided for reference, only part of the functions are currently tested and maintained.

Introduction

langid.py is a standalone Language Identification (LangID) tool.

The design principles are as follows:

  1. Fast
  2. Pre-trained over a large number of languages (currently 97)
  3. Not sensitive to domain-specific features (e.g. HTML/XML markup)
  4. Single .py file with minimal dependencies
  5. Deployable as a web service

All that is required to run langid.py is Python >= 3.6 and numpy.

The accompanying training tools are still Python2-only.

langid.py is WSGI-compliant. langid.py will use fapws3 as a web server if available, and default to wsgiref.simple_server otherwise.

langid.py comes pre-trained on 97 languages (ISO 639-1 codes given):

af, am, an, ar, as, az, be, bg, bn, br, bs, ca, cs, cy, da, de, dz, el, en, eo, es, et, eu, fa, fi, fo, fr, ga, gl, gu, he, hi, hr, ht, hu, hy, id, is, it, ja, jv, ka, kk, km, kn, ko, ku, ky, la, lb, lo, lt, lv, mg, mk, ml, mn, mr, ms, mt, nb, ne, nl, nn, no, oc, or, pa, pl, ps, pt, qu, ro, ru, rw, se, si, sk, sl, sq, sr, sv, sw, ta, te, th, tl, tr, ug, uk, ur, vi, vo, wa, xh, zh, zu

The training data was drawn from 5 different sources:

  • JRC-Acquis
  • ClueWeb 09
  • Wikipedia
  • Reuters RCV2
  • Debian i18n

Usage

langid [options]
optional arguments:
-h, --help show this help message and exit
-s, --serve launch web service
--host=HOST host/ip to bind to
--port=PORT port to listen on
-v increase verbosity (repeat for greater effect)
-m MODEL load model from file
-l LANGS, --langs=LANGS
  comma-separated set of target ISO639 language codes (e.g en,de)
-r, --remote auto-detect IP address for remote access
-b, --batch specify a list of files on the command line
--demo launch an in-browser demo application
-d, --dist show full distribution over languages
-u URL, --url=URL
  langid of URL
--line process pipes line-by-line rather than as a document
-n, --normalize
  normalize confidence scores to probability values

The simplest way to use langid.py is as a command-line tool, and you can invoke using python langid.py. If you installed langid.py as a Python module (e.g. via pip install langid), you can invoke langid instead of python langid.py -n (the two are equivalent). This will cause a prompt to display. Enter text to identify, and hit enter:

>>> This is a test
('en', -54.41310358047485)
>>> Questa e una prova
('it', -35.41771221160889)

langid.py can also detect when the input is redirected (only tested under Linux), and in this case will process until EOF rather than until newline like in interactive mode:

python langid.py < README.rst
('en', -22552.496054649353)

The value returned is the unnormalized probability estimate for the language. Calculating the exact probability estimate is disabled by default, but can be enabled through a flag:

python langid.py -n < README.rst
('en', 1.0)

More details are provided in this README in the section on Probability Normalization.

You can also use langid.py as a Python library:

# python
Python 2.7.2+ (default, Oct  4 2011, 20:06:09)
[GCC 4.6.1] on linux2
Type "help", "copyright", "credits" or "license" for more information.
>>> import langid
>>> langid.classify("This is a test")
('en', -54.41310358047485)

Finally, langid.py can use Python's built-in wsgiref.simple_server (or fapws3 if available) to provide language identification as a web service. To do this, launch python langid.py -s, and access http://localhost:9008/detect . The web service supports GET, POST and PUT. If GET is performed with no data, a simple HTML forms interface is displayed.

The response is generated in JSON, here is an example:

{"responseData": {"confidence": -54.41310358047485, "language": "en"}, "responseDetails": null, "responseStatus": 200}

A utility such as curl can be used to access the web service:

# curl -d "q=This is a test" localhost:9008/detect
{"responseData": {"confidence": -54.41310358047485, "language": "en"}, "responseDetails": null, "responseStatus": 200}

You can also use HTTP PUT:

# curl -T readme.rst localhost:9008/detect
  % Total    % Received % Xferd  Average Speed   Time    Time     Time  Current
                               Dload  Upload   Total   Spent    Left  Speed
100  2871  100   119  100  2752    117   2723  0:00:01  0:00:01 --:--:--  2727
{"responseData": {"confidence": -22552.496054649353, "language": "en"}, "responseDetails": null, "responseStatus": 200}

If no "q=XXX" key-value pair is present in the HTTP POST payload, langid.py will interpret the entire file as a single query. This allows for redirection via curl:

# echo "This is a test" | curl -d @- localhost:9008/detect
{"responseData": {"confidence": -54.41310358047485, "language": "en"}, "responseDetails": null, "responseStatus": 200}

langid.py will attempt to discover the host IP address automatically. Often, this is set to localhost(127.0.1.1), even though the machine has a different external IP address. langid.py can attempt to automatically discover the external IP address. To enable this functionality, start langid.py with the -r flag.

langid.py supports constraining of the output language set using the -l flag and a comma-separated list of ISO639-1 language codes (the -n flag enables probability normalization):

# python langid.py -n -l it,fr
>>> Io non parlo italiano
('it', 0.99999999988965627)
>>> Je ne parle pas français
('fr', 1.0)
>>> I don't speak english
('it', 0.92210605672341062)

When using langid.py as a library, the set_languages method can be used to constrain the language set:

python
Python 2.7.2+ (default, Oct  4 2011, 20:06:09)
[GCC 4.6.1] on linux2
Type "help", "copyright", "credits" or "license" for more information.
>>> import langid
>>> langid.classify("I do not speak english")
('en', 0.57133487679900674)
>>> langid.set_languages(['de','fr','it'])
>>> langid.classify("I do not speak english")
('it', 0.99999835791478453)
>>> langid.set_languages(['en','it'])
>>> langid.classify("I do not speak english")
('en', 0.99176190378750373)

Batch Mode

langid.py supports batch mode processing, which can be invoked with the -b flag. In this mode, langid.py reads a list of paths to files to classify as arguments. If no arguments are supplied, langid.py reads the list of paths from stdin, this is useful for using langid.py with UNIX utilities such as find.

In batch mode, langid.py uses multiprocessing to invoke multiple instances of the classifier, utilizing all available CPUs to classify documents in parallel.

Probability Normalization

The probabilistic model implemented by langid.py involves the multiplication of a large number of probabilities. For computational reasons, the actual calculations are implemented in the log-probability space (a common numerical technique for dealing with vanishingly small probabilities). One side-effect of this is that it is not necessary to compute a full probability in order to determine the most probable language in a set of candidate languages. However, users sometimes find it helpful to have a "confidence" score for the probability prediction. Thus, langid.py implements a re-normalization that produces an output in the 0-1 range.

langid.py disables probability normalization by default. For command-line usages of langid.py, it can be enabled by passing the -n flag. For probability normalization in library use, the user must instantiate their own LanguageIdentifier. An example of such usage is as follows:

>> from py3langid.langid import LanguageIdentifier, MODEL_FILE
>> identifier = LanguageIdentifier.from_pickled_model(MODEL_FILE, norm_probs=True)
>> identifier.classify("This is a test")
('en', 0.9999999909903544)

Training a model

So far Python 2.7 only, see the original instructions.

Read more

langid.py is based on published research. [1] describes the LD feature selection technique in detail, and [2] provides more detail about the module langid.py itself.

[1] Lui, Marco and Timothy Baldwin (2011) Cross-domain Feature Selection for Language Identification, In Proceedings of the Fifth International Joint Conference on Natural Language Processing (IJCNLP 2011), Chiang Mai, Thailand, pp. 553—561. Available from http://www.aclweb.org/anthology/I11-1062

[2] Lui, Marco and Timothy Baldwin (2012) langid.py: An Off-the-shelf Language Identification Tool, In Proceedings of the 50th Annual Meeting of the Association for Computational Linguistics (ACL 2012), Demo Session, Jeju, Republic of Korea. Available from www.aclweb.org/anthology/P12-3005

Comments
  • Normalized probabilities: only 1.0 in output values

    Normalized probabilities: only 1.0 in output values

    Hi Adrien,

    I am currently testing py3langid and I noticed something strange: the normalized probability values in the output are systematically 1.0. I tested texts of different lengths (1 word to several paragraphs) in different languages. I'm using it with Python. Is this something you noticed before?

    Thanks, Aleksandra

    bug 
    opened by aleksandra-miletic 2
  • Sourcery refactored master branch

    Sourcery refactored master branch

    Branch master refactored by Sourcery.

    If you're happy with these changes, merge this Pull Request using the Squash and merge strategy.

    See our documentation here.

    Run Sourcery locally

    Reduce the feedback loop during development by using the Sourcery editor plugin:

    Review changes via command line

    To manually merge these changes, make sure you're on the master branch, then run:

    git fetch origin sourcery/master
    git merge --ff-only FETCH_HEAD
    git reset HEAD^
    

    Help us improve this pull request!

    opened by sourcery-ai[bot] 1
  • Python3 branch (Sourcery refactored)

    Python3 branch (Sourcery refactored)

    Pull Request #2 refactored by Sourcery.

    If you're happy with these changes, merge this Pull Request using the Squash and merge strategy.

    NOTE: As code is pushed to the original Pull Request, Sourcery will re-run and update (force-push) this Pull Request with new refactorings as necessary. If Sourcery finds no refactorings at any point, this Pull Request will be closed automatically.

    See our documentation here.

    Run Sourcery locally

    Reduce the feedback loop during development by using the Sourcery editor plugin:

    Review changes via command line

    To manually merge these changes, make sure you're on the python3 branch, then run:

    git fetch origin sourcery/python3
    git merge --ff-only FETCH_HEAD
    git reset HEAD^
    

    Help us improve this pull request!

    opened by sourcery-ai[bot] 1
  • Sourcery refactored master branch

    Sourcery refactored master branch

    Branch master refactored by Sourcery.

    If you're happy with these changes, merge this Pull Request using the Squash and merge strategy.

    See our documentation here.

    Run Sourcery locally

    Reduce the feedback loop during development by using the Sourcery editor plugin:

    Review changes via command line

    To manually merge these changes, make sure you're on the master branch, then run:

    git fetch origin sourcery/master
    git merge --ff-only FETCH_HEAD
    git reset HEAD^
    

    Help us improve this pull request!

    opened by sourcery-ai[bot] 1
  • Sourcery refactored master branch

    Sourcery refactored master branch

    Branch master refactored by Sourcery.

    If you're happy with these changes, merge this Pull Request using the Squash and merge strategy.

    See our documentation here.

    Run Sourcery locally

    Reduce the feedback loop during development by using the Sourcery editor plugin:

    Review changes via command line

    To manually merge these changes, make sure you're on the master branch, then run:

    git fetch origin sourcery/master
    git merge --ff-only FETCH_HEAD
    git reset HEAD^
    

    Help us improve this pull request!

    opened by sourcery-ai[bot] 1
  • Sourcery refactored master branch

    Sourcery refactored master branch

    Branch master refactored by Sourcery.

    If you're happy with these changes, merge this Pull Request using the Squash and merge strategy.

    See our documentation here.

    Run Sourcery locally

    Reduce the feedback loop during development by using the Sourcery editor plugin:

    Review changes via command line

    To manually merge these changes, make sure you're on the master branch, then run:

    git fetch origin sourcery/master
    git merge --ff-only FETCH_HEAD
    git reset HEAD^
    

    Help us improve this pull request!

    opened by sourcery-ai[bot] 1
  • Sourcery refactored master branch

    Sourcery refactored master branch

    Branch master refactored by Sourcery.

    If you're happy with these changes, merge this Pull Request using the Squash and merge strategy.

    See our documentation here.

    Run Sourcery locally

    Reduce the feedback loop during development by using the Sourcery editor plugin:

    Review changes via command line

    To manually merge these changes, make sure you're on the master branch, then run:

    git fetch origin sourcery/master
    git merge --ff-only FETCH_HEAD
    git reset HEAD^
    

    Help us improve this pull request!

    opened by sourcery-ai[bot] 0
Releases(v0.2.2)
  • v0.2.2(Jun 14, 2022)

    • Fixed bug in probability normalization (#6)
    • Fully implemented data type argument in classify()
    • Adapted training scripts to Python3 (untested)

    Full Changelog: https://github.com/adbar/py3langid/compare/v0.2.1...v0.2.2

    Source code(tar.gz)
    Source code(zip)
  • v0.2.1(Mar 29, 2022)

  • v0.2.0(Nov 29, 2021)

    • Change Numpy data type for features (uint32uint16)
    • Code cleaning

    Full Changelog: https://github.com/adbar/py3langid/compare/v0.1.2...v0.2.0

    Source code(tar.gz)
    Source code(zip)
  • v0.1.2(Nov 24, 2021)

    • Include data in non-wheel package versions
    • Faster module loading
    • Extended tests and readme

    Full Changelog: https://github.com/adbar/py3langid/compare/v0.1.0...v0.1.2

    Source code(tar.gz)
    Source code(zip)
  • v0.1.0(Nov 23, 2021)

Owner
Adrien Barbaresi
Research scientist – natural language processing, web scraping and text analytics. Mostly with Python.
Adrien Barbaresi
GAP-text2SQL: Learning Contextual Representations for Semantic Parsing with Generation-Augmented Pre-Training

GAP-text2SQL: Learning Contextual Representations for Semantic Parsing with Generation-Augmented Pre-Training Code and model from our AAAI 2021 paper

Amazon Web Services - Labs 83 Jan 09, 2023
A Facebook Messenger Chatbot using NLP

A Facebook Messenger Chatbot using NLP This project is about creating a messenger chatbot using basic NLP techniques and models like Logistic Regressi

6 Nov 20, 2022
Simple python code to fix your combo list by removing any text after a separator or removing duplicate combos

Combo List Fixer A simple python code to fix your combo list by removing any text after a separator or removing duplicate combos Removing any text aft

Hamidreza Dehghan 3 Dec 05, 2022
Python3 to Crystal Translation using Python AST Walker

py2cr.py A code translator using AST from Python to Crystal. This is basically a NodeVisitor with Crystal output. See AST documentation (https://docs.

66 Jul 25, 2022
PyKaldi is a Python scripting layer for the Kaldi speech recognition toolkit.

PyKaldi is a Python scripting layer for the Kaldi speech recognition toolkit. It provides easy-to-use, low-overhead, first-class Python wrappers for t

922 Dec 31, 2022
A deep learning-based translation library built on Huggingface transformers

DL Translate A deep learning-based translation library built on Huggingface transformers and Facebook's mBART-Large 💻 GitHub Repository 📚 Documentat

Xing Han Lu 244 Dec 30, 2022
Search-Engine - 📖 AI based search engine

Search Engine AI based search engine that was trained on 25000 samples, feel free to train on up to 1.2M sample from kaggle dataset, link below StackS

Vladislav Kruglikov 2 Nov 29, 2022
A Non-Autoregressive Transformer based TTS, supporting a family of SOTA transformers with supervised and unsupervised duration modelings. This project grows with the research community, aiming to achieve the ultimate TTS.

A Non-Autoregressive Transformer based TTS, supporting a family of SOTA transformers with supervised and unsupervised duration modelings. This project grows with the research community, aiming to ach

Keon Lee 237 Jan 02, 2023
Train 🤗transformers with DeepSpeed: ZeRO-2, ZeRO-3

Fork from https://github.com/huggingface/transformers/tree/86d5fb0b360e68de46d40265e7c707fe68c8015b/examples/pytorch/language-modeling at 2021.05.17.

Junbum Lee 12 Oct 26, 2022
Dual languaged (rus+eng) tool for packing and unpacking archives of Silky Engine.

SilkyArcTool English Dual languaged (rus+eng) GUI tool for packing and unpacking archives of Silky Engine. It is not the same arc as used in Ai6WIN. I

Tester 5 Sep 15, 2022
NeoDays-based tileset for the roguelike CDDA (Cataclysm Dark Days Ahead)

NeoDaysPlus Reduced contrast, expanded, and continuously developed version of the CDDA tileset NeoDays that's being completed with new sprites for mis

0 Nov 12, 2022
Source code for CsiNet and CRNet using Fully Connected Layer-Shared feedback architecture.

FCS-applications Source code for CsiNet and CRNet using the Fully Connected Layer-Shared feedback architecture. Introduction This repository contains

Boyuan Zhang 4 Oct 07, 2022
Main repository for the chatbot Bobotinho.

Bobotinho Bot Main repository for the chatbot Bobotinho. ℹ️ Introduction Twitch chatbot with entertainment commands. ‎ 💻 Technologies Concurrent code

Bobotinho 14 Nov 29, 2022
超轻量级bert的pytorch版本,大量中文注释,容易修改结构,持续更新

bert4pytorch 2021年8月27更新: 感谢大家的star,最近有小伙伴反映了一些小的bug,我也注意到了,奈何这个月工作上实在太忙,更新不及时,大约会在9月中旬集中更新一个只需要pip一下就完全可用的版本,然后会新添加一些关键注释。 再增加对抗训练的内容,更新一个完整的finetune

muqiu 317 Dec 18, 2022
Toward Model Interpretability in Medical NLP

Toward Model Interpretability in Medical NLP LING380: Topics in Computational Linguistics Final Project James Cross ( 1 Mar 04, 2022

ZUNIT - Toward Zero-Shot Unsupervised Image-to-Image Translation

ZUNIT Dependencies you can install all the dependencies by pip install -r requirements.txt Datasets Download CUB dataset. Unzip the birds.zip at ./da

Chen Yuanqi 9 Jun 24, 2022
Generating Korean Slogans with phonetic and structural repetition

LexPOS_ko Generating Korean Slogans with phonetic and structural repetition Generating Slogans with Linguistic Features LexPOS is a sequence-to-sequen

Yeoun Yi 3 May 23, 2022
Crie tokens de autenticação íntegros e seguros com UToken.

UToken - Tokens seguros. UToken (ou Unhandleable Token) é uma bilioteca criada para ser utilizada na geração de tokens seguros e íntegros, ou seja, nã

Jaedson Silva 0 Nov 29, 2022
Conversational text Analysis using various NLP techniques

Conversational text Analysis using various NLP techniques

Rita Anjana 159 Jan 06, 2023
ADCS cert template modification and ACL enumeration

Purpose This tool is designed to aid an operator in modifying ADCS certificate templates so that a created vulnerable state can be leveraged for privi

Fortalice Solutions, LLC 78 Dec 12, 2022