[CVPR 2020] Transform and Tell: Entity-Aware News Image Captioning

Overview

Transform and Tell: Entity-Aware News Image Captioning

Teaser

This repository contains the code to reproduce the results in our CVPR 2020 paper Transform and Tell: Entity-Aware News Image Captioning. We propose an end-to-end model which generates captions for images embedded in news articles. News images present two key challenges: they rely on real-world knowledge, especially about named entities; and they typically have linguistically rich captions that include uncommon words. We address the first challenge by associating words in the caption with faces and objects in the image, via a multi-modal, multi-head attention mechanism. We tackle the second challenge with a state-of-the-art transformer language model that uses byte-pair-encoding to generate captions as a sequence of word parts.

On the GoodNews dataset, our model outperforms the previous state of the art by a factor of four in CIDEr score (13 to 54). This performance gain comes from a unique combination of language models, word representation, image embeddings, face embeddings, object embeddings, and improvements in neural network design. We also introduce the NYTimes800k dataset which is 70% larger than GoodNews, has higher article quality, and includes the locations of images within articles as an additional contextual cue.

A live demo can be accessed here. In the demo, you can provide the URL to a New York Times article. The server will then scrape the web page, extract the article and image, and feed them into our model to generate a caption.

Please cite with the following BibTeX:

@InProceedings{Tran_2020_CVPR,
  author = {Tran, Alasdair and Mathews, Alexander and Xie, Lexing},
  title = {Transform and Tell: Entity-Aware News Image Captioning},
  booktitle = {IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)},
  month = {June},
  year = {2020}
}

Requirements

# Install Anaconda for Python and then create a dedicated environment.
# This will make it easier to reproduce our experimental numbers.
conda env create -f environment.yml
conda activate tell

# This step is only needed if you want to use the Jupyter notebook
python -m ipykernel install --user --name tell --display-name "tell"

# Our Pytorch uses CUDA 10.2. Ensure that CUDA_HOME points to the right
# CUDA version. Chagne this depending on where you installed CUDA.
export CUDA_HOME=/usr/local/cuda-10.2

# We also pin the apex version, which is used for mixed precision training
cd libs/apex
git submodule init && git submodule update .
pip install -v --no-cache-dir --global-option="--pyprof" --global-option="--cpp_ext" --global-option="--cuda_ext" ./

# Install our package
cd ../.. && python setup.py develop

# Spacy is used to calcuate some of the evaluation metrics
spacy download en_core_web_lg

# We use nltk to tokenize the generated text to compute linguistic metrics
python -m nltk.downloader punkt

Getting Data

The quickest way to get the data is to send an email to [email protected] (where first is alasdair and last is tran) to request the MongoDB dump that contains the dataset. Alternatively, see here for instructions on how to get the data from scratch, which will take a few days.

Once we have obtained the data from the authors, which consists of two directories expt and data, you can simply put them at the root of this repo.

# If the data is download from our Cloudstor server, then you might need
# to first unzip the archives using either tar or 7z.

# First, let's start an empty local MongoDB server on port 27017. Below
# we set the cache size to 10GB of RAM. Change it depending on your system.
mkdir data/mongodb
mongod --bind_ip_all --dbpath data/mongodb --wiredTigerCacheSizeGB 10

# Next let's restore the NYTimes200k and GoodNews datasets
mongorestore --db nytimes --host=localhost --port=27017 --drop --gzip --archive=data/mongobackups/nytimes-2020-04-21.gz
mongorestore --db goodnews --host=localhost --port=27017 --drop --gzip --archive=data/mongobackups/goodnews-2020-04-21.gz

# Next we unarchive the image directories. For each dataset, you can see two
# directories: `images` and `images_processed`. The files in `images` are
# the orignal files scraped from the New York Times. You only need this
# if you want to recompute the face and object embeddings. Otherwise, all
# the experiments will use the images in `images_processed`, which have
# already been cropped and resized.
tar -zxf data/nytimes/images_processed.tar.gz -C data/nytimes/
tar -zxf data/goodnews/images_processed.tar.gz -C data/goodnews/

# We are now ready to train the models!

You can see an example of how we read the NYTimes800k samples from the MongoDB database here. Here's a minimum working example in Python:

import os
from PIL import Image
from pymongo import MongoClient

# Assume that you've already restored the database and the mongo server is running
client = MongoClient(host='localhost', port=27017)

# All of our NYTimes800k articles sit in the database `nytimes`
db = client.nytimes

# Here we select a random article in the training set.
article = db.articles.find_one({'split': 'train'})

# You can visit the original web page where this article came from
url = article['web_url']

# Each article contains a lot of fields. If you want the title, then
title = article['headline']['main'].strip()

# If you want the article text, then you will need to manually merge all
# paragraphs together.
sections = article['parsed_section']
paragraphs = []
for section in sections:
    if section['type'] == 'paragraph':
        paragraphs.append(section['text'])
article_text = '\n'.join(paragraphs)

# To get the caption of the first image in the article
pos = article['image_positions'][0]
caption = sections[pos]['text'].strip()

# If you want to load the actual image into memory
image_dir = 'data/nytimes/images_processed' # change this accordingly
image_path = os.path.join(image_dir, f"{sections[pos]['hash']}.jpg")
image = Image.open(image_path)

# You can also load the pre-computed FaceNet embeddings of the faces in the image
facenet_embeds = sections[pos]['facenet_details']['embeddings']

# Object embeddings are stored in a separate collection due to a size limit in mongo
obj = db.objects.find_one({'_id': sections[pos]['hash']})
object_embeds = obj['object_features']

Training and Evaluation

# Train the full model on NYTimes800k. This takes around 4 days on a Titan V GPU.
# The training will populate the directory expt/nytimes/9_transformer_objects/serialization
CUDA_VISIBLE_DEVICES=0 tell train expt/nytimes/9_transformer_objects/config.yaml -f

# Once training is finished, the best model weights are stored in
#   expt/nytimes/9_transformer_objects/serialization/best.th
# We can use this to generate captions on the NYTimes800k test set. This
# takes about one hour.
CUDA_VISIBLE_DEVICES=0 tell evaluate expt/nytimes/9_transformer_objects/config.yaml -m expt/nytimes/9_transformer_objects/serialization/best.th

# Compute the evaluation metrics on the test set
python scripts/compute_metrics.py -c data/nytimes/name_counters.pkl expt/nytimes/9_transformer_objects/serialization/generations.jsonl

There are also other model variants which are ablation studies. Check our paper for more details, but here's a summary:

Experiment Word Embedding Language Model Image Attention Weighted RoBERTa Location-Aware Face Attention Object Attention
1_lstm_glove GloVe LSTM
2_transformer_glove GloVe Transformer
3_lstm_roberta RoBERTa LSTM
4_no_image RoBERTa Transformer
5_transformer_roberta RoBERTa Transformer
6_transformer_weighted_roberta RoBERTa Transformer
7_trasnformer_location_aware RoBERTa Transformer
8_transformer_faces RoBERTa Transformer
9_transformer_objects RoBERTa Transformer

Acknowledgement

Owner
Alasdair Tran
Just another collection of fermions and bosons.
Alasdair Tran
TorchX: A PyTorch Extension Library for More Efficient Deep Learning

TorchX TorchX: A PyTorch Extension Library for More Efficient Deep Learning. @misc{torchx, author = {Ansheng You and Changxu Wang}, title = {T

Donny You 8 May 28, 2022
Utilities and information for the signals.numer.ai tournament

dsignals Utilities and information for the signals.numer.ai tournament using eodhistoricaldata.com eodhistoricaldata.com provides excellent historical

Degerhan Usluel 23 Dec 18, 2022
Ensemble Visual-Inertial Odometry (EnVIO)

Ensemble Visual-Inertial Odometry (EnVIO) Authors : Jae Hyung Jung, Yeongkwon Choe, and Chan Gook Park 1. Overview This is a ROS package of Ensemble V

Jae Hyung Jung 95 Jan 03, 2023
[ICCV 2021] Code release for "Sub-bit Neural Networks: Learning to Compress and Accelerate Binary Neural Networks"

Sub-bit Neural Networks: Learning to Compress and Accelerate Binary Neural Networks By Yikai Wang, Yi Yang, Fuchun Sun, Anbang Yao. This is the pytorc

Yikai Wang 26 Nov 20, 2022
Meta Learning for Semi-Supervised Few-Shot Classification

few-shot-ssl-public Code for paper Meta-Learning for Semi-Supervised Few-Shot Classification. [arxiv] Dependencies cv2 numpy pandas python 2.7 / 3.5+

Mengye Ren 501 Jan 08, 2023
Codes for our paper The Stem Cell Hypothesis: Dilemma behind Multi-Task Learning with Transformer Encoders published to EMNLP 2021.

The Stem Cell Hypothesis Codes for our paper The Stem Cell Hypothesis: Dilemma behind Multi-Task Learning with Transformer Encoders published to EMNLP

Emory NLP 5 Jul 08, 2022
ViSD4SA, a Vietnamese Span Detection for Aspect-based sentiment analysis dataset

UIT-ViSD4SA PACLIC 35 General Introduction This repository contains the data of the paper: Span Detection for Vietnamese Aspect-Based Sentiment Analys

Nguyễn Thị Thanh Kim 5 Nov 13, 2022
🗣️ Microsoft Edge TTS for Home Assistant, no need for app_key

Microsoft Edge TTS for Home Assistant This component is based on the TTS service of Microsoft Edge browser, no need to apply for app_key. Install Down

152 Dec 31, 2022
Prior-Guided Multi-View 3D Head Reconstruction

Prior-Guided Head MVS This repository includes some reconstruction results of our IEEE TMM 2021 paper, Prior-Guided Multi-View 3D Head Reconstruction.

11 Aug 17, 2022
Y. Zhang, Q. Yao, W. Dai, L. Chen. AutoSF: Searching Scoring Functions for Knowledge Graph Embedding. IEEE International Conference on Data Engineering (ICDE). 2020

AutoSF The code for our paper "AutoSF: Searching Scoring Functions for Knowledge Graph Embedding" and this paper has been accepted by ICDE2020. News:

AutoML Research 64 Dec 17, 2022
CLIP (Contrastive Language–Image Pre-training) for Italian

Italian CLIP CLIP (Radford et al., 2021) is a multimodal model that can learn to represent images and text jointly in the same space. In this project,

Italian CLIP 114 Dec 29, 2022
PyTorch trainer and model for Sequence Classification

PyTorch-trainer-and-model-for-Sequence-Classification After cloning the repository, modify your training data so that the training data is a .csv file

NhanTieu 2 Dec 09, 2022
Cookiecutter PyTorch Lightning

Cookiecutter PyTorch Lightning Instructions # install cookiecutter pip install cookiecutter

Mazen 8 Nov 06, 2022
Deep-learning X-Ray Micro-CT image enhancement, pore-network modelling and continuum modelling

EDSR modelling A Github repository for deep-learning image enhancement, pore-network and continuum modelling from X-Ray Micro-CT images. The repositor

Samuel Jackson 7 Nov 03, 2022
Geometric Vector Perceptron --- a rotation-equivariant GNN for learning from biomolecular structure

Geometric Vector Perceptron Code to accompany Learning from Protein Structure with Geometric Vector Perceptrons by B Jing, S Eismann, P Suriana, RJL T

Dror Lab 85 Dec 29, 2022
This repository contains the reference implementation for our proposed Convolutional CRFs.

ConvCRF This repository contains the reference implementation for our proposed Convolutional CRFs in PyTorch (Tensorflow planned). The two main entry-

Marvin Teichmann 553 Dec 07, 2022
Code for "Learning to Regrasp by Learning to Place"

Learning2Regrasp Learning to Regrasp by Learning to Place, CoRL 2021. Introduction We propose a point-cloud-based system for robots to predict a seque

Shuo Cheng (成硕) 18 Aug 27, 2022
Atif Hassan 103 Dec 14, 2022
Library for converting from RGB / GrayScale image to base64 and back.

Library for converting RGB / Grayscale numpy images from to base64 and back. Installation pip install -U image_to_base_64 Conversion RGB to base 64 b

Vladimir Iglovikov 16 Aug 28, 2022
Pose estimation with MoveNet Lightning

Pose Estimation With MoveNet Lightning MoveNet is the TensorFlow pre-trained model that identifies 17 different key points of the human body. It is th

Yash Vora 2 Jan 04, 2022