Code for CVPR 2021 paper: Revamping Cross-Modal Recipe Retrieval with Hierarchical Transformers and Self-supervised Learning

Overview

Revamping Cross-Modal Recipe Retrieval with Hierarchical Transformers and Self-supervised Learning

This is the PyTorch companion code for the paper:

Amaia Salvador, Erhan Gundogdu, Loris Bazzani, and Michael Donoser. Revamping Cross-Modal Recipe Retrieval with Hierarchical Transformers and Self-supervised Learning. CVPR 2021

If you find this code useful in your research, please consider citing using the following BibTeX entry:

@inproceedings{salvador2021revamping,
    title={Revamping Cross-Modal Recipe Retrieval with Hierarchical Transformers and Self-supervised Learning},
    author={Salvador, Amaia and Gundogdu, Erhan and Bazzani, Loris and Donoser, Michael},
    booktitle = {The IEEE Conference on Computer Vision and Pattern Recognition (CVPR)},
    month = {June},
    year = {2021}
}

Cloning

This repository uses git-lfs to store model checkpoint files. Make sure to install it before cloning by following the instructions here:

Once installed, model checkpoint files will be automatically downloaded when cloning the repository with:

git clone [email protected]:amzn/image-to-recipe-transformers.git

These files can optionally be ignored by using git lfs install --skip-smudge before cloning the repository, and can be downloaded at any time using git lfs pull.

Installation

  • Create conda environment: conda env create -f environment.yml
  • Activate it with conda activate im2recipetransformers

Data preparation

  • Download & uncompress Recipe1M dataset. The contents of the directory DATASET_PATH should be the following:
layer1.json
layer2.json
train/
val/
test/

The directories train/, val/, and test/ must contain the image files for each split after uncompressing.

  • Make splits and create vocabulary by running:
python preprocessing.py --root DATASET_PATH

This process will create auxiliary files under DATASET_PATH/traindata, which will be used for training.

Training

  • Launch training with:
python train.py --model_name model --root DATASET_PATH --save_dir /path/to/saved/model/checkpoints

Tensorboard logging can be enabled with --tensorboard. Then, from the checkpoints directory run:

tensorboard --logdir "./" --port PORT

Run python train.py --help for the full list of available arguments.

Evaluation

  • Extract features from the trained model for the test set samples of Recipe1M:
python test.py --model_name model --eval_split test --root DATASET_PATH --save_dir /path/to/saved/model/checkpoints
  • Compute MedR and recall metrics for the extracted feature set:
python eval.py --embeddings_file /path/to/saved/model/checkpoints/model/feats_test.pkl --medr_N 10000

Pretrained models

  • We provide pretrained model weights under the checkpoints directory. Make sure you run git lfs pull to download the model files.
  • Extract the zip files. For each model, a folder named MODEL_NAME with two files, args.pkl, and model-best.ckpt is provided.
  • Extract features for the test set samples of Recipe1M using one of the pretrained models by running:
python test.py --model_name MODEL_NAME --eval_split test --root DATASET_PATH --save_dir ../checkpoints
  • A file with extracted features will be saved under ../checkpoints/MODEL_NAME.

Security

See CONTRIBUTING for more information.

License

This project is licensed under the Apache-2.0 License.

Owner
Amazon
Amazon
CDLA: A Chinese document layout analysis (CDLA) dataset

CDLA: A Chinese document layout analysis (CDLA) dataset 介绍 CDLA是一个中文文档版面分析数据集,面向中文文献类(论文)场景。包含以下10个label: 正文 标题 图片 图片标题 表格 表格标题 页眉 页脚 注释 公式 Text Title

buptlihang 84 Dec 28, 2022
结巴中文分词

jieba “结巴”中文分词:做最好的 Python 中文分词组件 "Jieba" (Chinese for "to stutter") Chinese text segmentation: built to be the best Python Chinese word segmentation

Sun Junyi 29.8k Jan 02, 2023
Use AutoModelForSeq2SeqLM in Huggingface Transformers to train COMET

Training COMET using seq2seq setting Use AutoModelForSeq2SeqLM in Huggingface Transformers to train COMET. The codes are modified from run_summarizati

tqfang 9 Dec 17, 2022
Twitter Sentiment Analysis using #tag, words and username

Twitter Sentment Analysis Web App using #tag, words and username to fetch data finds Insides of data and Tells Sentiment of the perticular #tag, words or username.

Kumar Saksham 26 Dec 25, 2022
code for modular summarization work published in ACL2021 by Krishna et al

This repository contains the code for running modular summarization pipelines as described in the publication Krishna K, Khosla K, Bigham J, Lipton ZC

Approximately Correct Machine Intelligence (ACMI) Lab 21 Nov 24, 2022
Azure Text-to-speech service for Home Assistant

Azure Text-to-speech service for Home Assistant The Azure text-to-speech platform uses online Azure Text-to-Speech cognitive service to read a text wi

Yassine Selmi 2 Aug 06, 2022
Code and dataset for the EMNLP 2021 Finding paper "Can NLI Models Verify QA Systems’ Predictions?"

Code and dataset for the EMNLP 2021 Finding paper "Can NLI Models Verify QA Systems’ Predictions?"

Jifan Chen 22 Oct 21, 2022
Python SDK for working with Voicegain Speech-to-Text

Voicegain Speech-to-Text Python SDK Python SDK for the Voicegain Speech-to-Text API. This API allows for large vocabulary speech-to-text transcription

Voicegain 3 Dec 14, 2022
Scene Text Retrieval via Joint Text Detection and Similarity Learning

This is the code of "Scene Text Retrieval via Joint Text Detection and Similarity Learning". For more details, please refer to our CVPR2021 paper.

79 Nov 29, 2022
Help you discover excellent English projects and get rid of disturbing by other spoken language

GitHub English Top Charts 「Help you discover excellent English projects and get

GrowingGit 544 Jan 09, 2023
초성 해석기 based on ko-BART

초성 해석기 개요 한국어 초성만으로 이루어진 문장을 입력하면, 완성된 문장을 예측하는 초성 해석기입니다. 초성: ㄴㄴ ㄴㄹ ㅈㅇㅎ 예측 문장: 나는 너를 좋아해 모델 모델은 SKT-AI에서 공개한 Ko-BART를 이용합니다. 데이터 문장 단위로 이루어진 아무 코퍼스나

Dawoon Jung 29 Oct 28, 2022
The Sudachi synonym dictionary in Solar format.

solr-sudachi-synonyms The Sudachi synonym dictionary in Solar format. Summary Run a script that checks for updates to the Sudachi dictionary every hou

Karibash 3 Aug 19, 2022
Text editor on python tkinter to convert english text to other languages with the help of ployglot.

Transliterator Text Editor This is a simple transliteration program which is used to convert english word to phonetically matching word in another lan

Merin Rose Tom 1 Jan 16, 2022
:P Some basic stuff I'm gonna use for my upcoming Agile Software Development and Devops

reverse-image-search-py bash script.sh img_name.jpg Requirements pip install requests pip install pyshorteners Dry run [ Sudhanva M 3 Dec 18, 2021

Coreference resolution for English, French, German and Polish, optimised for limited training data and easily extensible for further languages

Coreferee Author: Richard Paul Hudson, Explosion AI 1. Introduction 1.1 The basic idea 1.2 Getting started 1.2.1 English 1.2.2 French 1.2.3 German 1.2

Explosion 70 Dec 12, 2022
A repo for open resources & information for people to succeed in PhD in CS & career in AI / NLP

A repo for open resources & information for people to succeed in PhD in CS & career in AI / NLP

420 Dec 28, 2022
PortaSpeech - PyTorch Implementation

PortaSpeech - PyTorch Implementation PyTorch Implementation of PortaSpeech: Portable and High-Quality Generative Text-to-Speech. Model Size Module Nor

Keon Lee 276 Dec 26, 2022
Honor's thesis project analyzing whether the GPT-2 model can more effectively generate free-verse or structured poetry.

gpt2-poetry The following code is for my senior honor's thesis project, under the guidance of Dr. Keith Holyoak at the University of California, Los A

Ashley Kim 2 Jan 09, 2022
Optimal Transport Tools (OTT), A toolbox for all things Wasserstein.

Optimal Transport Tools (OTT), A toolbox for all things Wasserstein. See full documentation for detailed info on the toolbox. The goal of OTT is to pr

OTT-JAX 255 Dec 26, 2022
SEJE is a prototype for the paper Learning Text-Image Joint Embedding for Efficient Cross-Modal Retrieval with Deep Feature Engineering.

SEJE is a prototype for the paper Learning Text-Image Joint Embedding for Efficient Cross-Modal Retrieval with Deep Feature Engineering. Contents Inst

0 Oct 21, 2021