This repository contains the code, models and datasets discussed in our paper "Few-Shot Question Answering by Pretraining Span Selection"

Overview

Splinter

This repository contains the code, models and datasets discussed in our paper "Few-Shot Question Answering by Pretraining Span Selection", to appear at ACL 2021.

Our pretraining code is based on TensorFlow (checked on 1.15), while fine-tuning is based on PyTorch (1.7.1) and Transformers (2.9.0). Note each has its own requirement file: pretraining/requirements.txt and finetuning/requirements.txt.

Data

Downloading Few-Shot MRQA Splits

curl -L https://www.dropbox.com/sh/pfg8j6yfpjltwdx/AAC8Oky0w8ZS-S3S5zSSAuQma?dl=1 > mrqa-few-shot.zip
unzip mrqa-few-shot.zip -d mrqa-few-shot

Pretrained Model

Command for downloading Splinter
curl -L https://www.dropbox.com/sh/h63xx2l2fjq8bsz/AAC5_Z_F2zBkJgX87i3IlvGca?dl=1 > splinter.zip
unzip splinter.zip -d splinter 

Pretraining

Create a virtual environment and execute

cd pretraining
pip install -r requirements.txt  # or requirements-gpu.txt for a GPU version

Then download the raw data (our pretraining was based on Wikipedia and BookCorpus). We support two data formats:

  • For wiki, a tag starts a new article and a ends it.
  • For BookCorpus, we process an already-tokenized file where tokens are separated by whitespaces. Newlines stands for a new book.
Command for creating the pretraining data

This command takes as input a set of files ($INPUT_PATTERN) and creates a tensorized dataset for pretraining. It supports the following masking schemes:

Command for creating the data for Splinter (recurring span selection)
cd pretraining
python create_pretraining_data.py \
    --input_file=$INPUT_PATTERN \
    --output_dir=$OUTPUT_DIR \
    --vocab_file=vocabs/bert-cased-vocab.txt \
    --do_lower_case=False \
    --do_whole_word_mask=False \
    --max_seq_length=512 \
    --num_processes=63 \
    --dupe_factor=5 \
    --max_span_length=10 \
    --recurring_span_selection=True \
    --only_recurring_span_selection=True \
    --max_questions_per_seq=30

n-gram statistics are written to ngrams.txt in the output directory.

Command for pretraining Splinter
cd pretraining
python run_pretraining.py \
    --bert_config_file=configs/bert-base-cased-config.json \
    --input_file=$INPUT_FILE \
    --output_dir=$OUTPUT_DIR \
    --max_seq_length=512 \
    --recurring_span_selection=True \
    --only_recurring_span_selection=True \
    --max_questions_per_seq=30 \
    --do_train \
    --train_batch_size=256 \
    --learning_rate=1e-4 \
    --num_train_steps=2400000 \
    --num_warmup_steps=10000 \
    --save_checkpoints_steps=10000 \
    --keep_checkpoint_max=240 \
    --use_tpu \
    --num_tpu_cores=8 \
    --tpu_name=$TPU_NAME

This can be trained using GPUs by dropping the use_tpu flag (although it was tested mainly on TPUs).

Convert TensorFlow Model to PyTorch

In order to fine-tune the TF model you pretrained with run_pretraining.py, you will first need to convert it to PyTorch. You can do so by

cd model_conversion
pip install -r requirements.txt
python convert_tf_to_pytorch.py --tf_checkpoint_path $TF_MODEL_PATH --pytorch_dump_path $OUTPUT_PATH

Fine-tuning

Fine-tuning has different requirements than pretraining, as it uses HuggingFace's Transformers library. Create a virtual environment and execute

cd finetuning
pip install -r requirements.txt

Please Note: If you want to reproduce results from the paper or run with a QASS head in genral, questions need to be augmented with a [QUESTION] token. In order to do so, please run

cd finetuning
python qass_preprocess.py --path "../mrqa-few-shot/*/*.jsonl"

This will add a [MASK] token to each question in the training data, which will later be replaced by a [QUESTION] token automatically by the QASS layer implementation.

Then fine-tune Splinter by

cd finetuning
export MODEL="../splinter"
export OUTPUT_DIR="output"
python run_mrqa.py \
    --model_type=bert \
    --model_name_or_path=$MODEL \
    --qass_head=True \
    --tokenizer_name=$MODEL \
    --output_dir=$OUTPUT_DIR \
    --train_file="../mrqa-few-shot/squad/squad-train-seed-42-num-examples-16_qass.jsonl" \
    --predict_file="../mrqa-few-shot/squad/dev_qass.jsonl" \
    --do_train \
    --do_eval \
    --max_seq_length=384 \
    --doc_stride=128 \
    --threads=4 \
    --save_steps=50000 \
    --per_gpu_train_batch_size=12 \
    --per_gpu_eval_batch_size=16 \
    --learning_rate=3e-5 \
    --max_answer_length=10 \
    --warmup_ratio=0.1 \
    --min_steps=200 \
    --num_train_epochs=10 \
    --seed=42 \
    --use_cache=False \
    --evaluate_every_epoch=False 

In order to train with automatic mixed precision, install apex and add the --fp16 flag.

See an example script for fine-tuning SpanBERT (rather than Splinter) here.

Citation

If you find this work helpful, please cite us

@inproceedings{ram-etal-2021-shot,
    title = "Few-Shot Question Answering by Pretraining Span Selection",
    author = "Ram, Ori  and
      Kirstain, Yuval  and
      Berant, Jonathan  and
      Globerson, Amir  and
      Levy, Omer",
    booktitle = "Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers)",
    month = aug,
    year = "2021",
    address = "Online",
    publisher = "Association for Computational Linguistics",
    url = "https://aclanthology.org/2021.acl-long.239",
    pages = "3066--3079",
}

Acknowledgements

We would like to thank the European Research Council (ERC) for funding the project, and to Google’s TPU Research Cloud (TRC) for their support in providing TPUs.

Owner
Ori Ram
PhD Candidate at Tel Aviv University, focusing on NLP and Machine Learning
Ori Ram
pyMorfologik MorfologikpyMorfologik - Python binding for Morfologik.

Python binding for Morfologik Morfologik is Polish morphological analyzer. For more information see http://github.com/morfologik/morfologik-stemming/

Damian Mirecki 18 Dec 29, 2021
simpleT5 is built on top of PyTorch-lightning⚡️ and Transformers🤗 that lets you quickly train your T5 models.

Quickly train T5 models in just 3 lines of code + ONNX support simpleT5 is built on top of PyTorch-lightning ⚡️ and Transformers 🤗 that lets you quic

Shivanand Roy 220 Dec 30, 2022
My Implementation for the paper EDA: Easy Data Augmentation Techniques for Boosting Performance on Text Classification Tasks using Tensorflow

Easy Data Augmentation Implementation This repository contains my Implementation for the paper EDA: Easy Data Augmentation Techniques for Boosting Per

Aflah 9 Oct 31, 2022
숭실대학교 컴퓨터학부 전공종합설계프로젝트

✨ 시각장애인을 위한 버스도착 알림 장치 ✨ 👀 개요 현대 사회에서 대중교통 위치 정보를 이용하여 사람들이 간단하게 이용할 대중교통의 정보를 얻고 쉽게 대중교통을 이용할 수 있다. 해당 정보는 각종 어플리케이션과 대중교통 이용시설에서 위치 정보를 제공하고 있지만 시각

taegyun 3 Jan 25, 2022
Conversational text Analysis using various NLP techniques

Conversational text Analysis using various NLP techniques

Rita Anjana 159 Jan 06, 2023
Implementing SimCSE(paper, official repository) using TensorFlow 2 and KR-BERT.

KR-BERT-SimCSE Implementing SimCSE(paper, official repository) using TensorFlow 2 and KR-BERT. Training Unsupervised python train_unsupervised.py --mi

Jeong Ukjae 27 Dec 12, 2022
A simple recipe for training and inferencing Transformer architecture for Multi-Task Learning on custom datasets. You can find two approaches for achieving this in this repo.

multitask-learning-transformers A simple recipe for training and inferencing Transformer architecture for Multi-Task Learning on custom datasets. You

Shahrukh Khan 48 Jan 02, 2023
Retraining OpenAI's GPT-2 on Discord Chats

Train OpenAI's GPT-2 on Discord Chats Retraining a Text Generation Model on Discord Chats using gpt-2-simple that wraps existing model fine-tuning and

Ayush Mishra 4 Oct 27, 2022
Implementation of Memorizing Transformers (ICLR 2022), attention net augmented with indexing and retrieval of memories using approximate nearest neighbors, in Pytorch

Memorizing Transformers - Pytorch Implementation of Memorizing Transformers (ICLR 2022), attention net augmented with indexing and retrieval of memori

Phil Wang 364 Jan 06, 2023
Fake news detector filters - Smart filter project allow to classify the quality of information and web pages

fake-news-detector-1.0 Lists, lists and more lists... Spam filter list, quality keyword list, stoplist list, top-domains urls list, news agencies webs

Memo Sim 1 Jan 04, 2022
Sploitus - Command line search tool for sploitus.com. Think searchsploit, but with more POCs

Sploitus Command line search tool for sploitus.com. Think searchsploit, but with

watchdog2000 5 Mar 07, 2022
Autoregressive Entity Retrieval

The GENRE (Generative ENtity REtrieval) system as presented in Autoregressive Entity Retrieval implemented in pytorch. @inproceedings{decao2020autoreg

Meta Research 611 Dec 16, 2022
Simple python code to fix your combo list by removing any text after a separator or removing duplicate combos

Combo List Fixer A simple python code to fix your combo list by removing any text after a separator or removing duplicate combos Removing any text aft

Hamidreza Dehghan 3 Dec 05, 2022
Paradigm Shift in NLP - "Paradigm Shift in Natural Language Processing".

Paradigm Shift in NLP Welcome to the webpage for "Paradigm Shift in Natural Language Processing". Some resources of the paper are constantly maintaine

Tianxiang Sun 41 Dec 30, 2022
Random Directed Acyclic Graph Generator

DAG_Generator Random Directed Acyclic Graph Generator verison1.0 简介 工作流通常由DAG(有向无环图)来定义,其中每个计算任务$T_i$由一个顶点(node,task,vertex)表示。同时,任务之间的每个数据或控制依赖性由一条加权

Livion 17 Dec 27, 2022
PyTorch impelementations of BERT-based Spelling Error Correction Models.

PyTorch impelementations of BERT-based Spelling Error Correction Models

Heng Cai 209 Dec 30, 2022
Codes for coreference-aware machine reading comprehension

Data and code for the paper "Tracing Origins: Coreference-aware Machine Reading Comprehension" at ACL2022. Dataset There are three folders for our thr

11 Sep 29, 2022
GVT is a generic translation tool for parts of text on the PC screen with Text to Speak functionality.

GVT is a generic translation tool for parts of text on the PC screen with Text to Speech functionality. I wanted to create it because the existing tools that I experimented with did not satisfy me in

Nuked 1 Aug 21, 2022
The swas programming language

The Swas programming language This is a language that was made for fun. Installation Step 0: Make sure you have python installed Step 1. Clone this re

Swas.py 19 Jul 18, 2022
Hostapd-mac-tod-acl - Setup a hostapd AP with MAC ToD ACL

A brief explanation This script provides a quick way to setup a Time-of-day (Tod

2 Feb 03, 2022