Extract rooms type, door, neibour rooms, rooms corners nad bounding boxes, and generate graph from rplan dataset

Overview

Housegan-data-reader

House-GAN++ (data-reader)

Code and instructions for converting rplan dataset (raster images) to housegan++ data format. House-GAN++: Generative Adversarial Layout Refinement Network towards Intelligent Computational Agent for Professional Architects, CVPR 2021. Project website.

Input Data

alt text
Data: RPLAN dataset, which offers 60k vector-graphics floorplans designed by professional architects.

How to run

python rasetr_to_json.py --path #rplan_dataset/#image_number.png

Output data format

The data file (e.g., /sample_output/0.json).

ROOM_CLASS = {"living_room": 1, "kitchen": 2, "bedroom": 3, "bathroom": 4, "balcony": 5, "entrance": 6, "dining room": 7, "study room": 8,
              "storage": 10 , "front door": 15, "unknown": 16, "interior_door": 17}
              
              
# having room type in it
"room_type": [3, 4, 1, 3 ]

#bounding boxes per room        
"boxes: [[72.0, 161.0, 124.0, 220.0], [72.0, 130.0, 107.0, 157.0], [111.0, 28.0, 184.0, 203.0], [72.0, 87.0, 124.0, 126.0]] 

#first four entry are per list are rooms edges and 4th and 6th are showing what room type is on each side of edge 
"edges":[72.0, 161.0, 72.0, 220.0, 3, 0], ...,[107.0, 130.0, 72.0, 130.0, 4, 0], [148.0, 28.0, 148.0, 87.0, 1, 2]] 

#room indexes that are on each side of the edges
"ed_rm":[0], [0], [0], [0, 2], ..., [2], [2, 3], [2, 1], [2, 0], [2]] 

Citation

Please consider citing our work.

@inproceedings{nauata2021house,
  title={House-GAN++: Generative Adversarial Layout Refinement Network towards Intelligent Computational Agent for Professional Architects},
  author={Nauata, Nelson and Hosseini, Sepidehsadat and Chang, Kai-Hung and Chu, Hang and Cheng, Chin-Yi and Furukawa, Yasutaka},
  booktitle={Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition},
  pages={13632--13641},
  year={2021}
}

Contact

If you have any question, feel free to contact me at [email protected]

Acknowledgement

This research is partially supported by NSERC Discovery Grants, NSERC Discovery Grants Accelerator Supplements, DND/NSERC Discovery Grant Supplement, and Autodesk. We would like to thank architects and students for participating in our user study.

Owner
Sepid Hosseini
Research Assistant in "Gruvi Lab"
Sepid Hosseini
Under the hood working of transformers, fine-tuning GPT-3 models, DeBERTa, vision models, and the start of Metaverse, using a variety of NLP platforms: Hugging Face, OpenAI API, Trax, and AllenNLP

Transformers-for-NLP-2nd-Edition @copyright 2022, Packt Publishing, Denis Rothman Contact me for any question you have on LinkedIn Get the book on Ama

Denis Rothman 150 Dec 23, 2022
Rhyme with AI

Local development Create a conda virtual environment and activate it: conda env create --file environment.yml conda activate rhyme-with-ai Install the

GoDataDriven 28 Nov 21, 2022
Python library for Serbian Natural language processing (NLP)

SrbAI - Python biblioteka za procesiranje srpskog jezika SrbAI je projekat prikupljanja algoritama i modela za procesiranje srpskog jezika u jedinstve

Serbian AI Society 3 Nov 22, 2022
Resources for "Natural Language Processing" Coursera course.

Natural Language Processing course resources This github contains practical assignments for Natural Language Processing course by Higher School of Eco

Advanced Machine Learning specialisation by HSE 1.1k Jan 01, 2023
The model is designed to train a single and large neural network in order to predict correct translation by reading the given sentence.

Neural Machine Translation communication system The model is basically direct to convert one source language to another targeted language using encode

Nishant Banjade 7 Sep 22, 2022
This library is testing the ethics of language models by using natural adversarial texts.

prompt2slip This library is testing the ethics of language models by using natural adversarial texts. This tool allows for short and simple code and v

9 Dec 28, 2021
PG-19 Language Modelling Benchmark

PG-19 Language Modelling Benchmark This repository contains the PG-19 language modeling benchmark. It includes a set of books extracted from the Proje

DeepMind 161 Oct 30, 2022
L3Cube-MahaCorpus a Marathi monolingual data set scraped from different internet sources.

L3Cube-MahaCorpus L3Cube-MahaCorpus a Marathi monolingual data set scraped from different internet sources. We expand the existing Marathi monolingual

21 Dec 17, 2022
Python Implementation of ``Modeling the Influence of Verb Aspect on the Activation of Typical Event Locations with BERT'' (Findings of ACL: ACL 2021)

BERT-for-Surprisal Python Implementation of ``Modeling the Influence of Verb Aspect on the Activation of Typical Event Locations with BERT'' (Findings

7 Dec 05, 2022
[Preprint] Escaping the Big Data Paradigm with Compact Transformers, 2021

Compact Transformers Preprint Link: Escaping the Big Data Paradigm with Compact Transformers By Ali Hassani[1]*, Steven Walton[1]*, Nikhil Shah[1], Ab

SHI Lab 367 Dec 31, 2022
A simple visual front end to the Maya UE4 RBF plugin delivered with MetaHumans

poseWrangler Overview PoseWrangler is a simple UI to create and edit pose-driven relationships in Maya using the MayaUE4RBF plugin. This plugin is dis

Christopher Evans 105 Dec 18, 2022
A framework for training and evaluating AI models on a variety of openly available dialogue datasets.

ParlAI (pronounced “par-lay”) is a python framework for sharing, training and testing dialogue models, from open-domain chitchat, to task-oriented dia

Facebook Research 9.7k Jan 09, 2023
Web Scraping, Document Deduplication & GPT-2 Fine-tuning with a newly created scam dataset.

Web Scraping, Document Deduplication & GPT-2 Fine-tuning with a newly created scam dataset.

18 Nov 28, 2022
NeuTex: Neural Texture Mapping for Volumetric Neural Rendering

NeuTex: Neural Texture Mapping for Volumetric Neural Rendering Paper: https://arxiv.org/abs/2103.00762 Running Run on the provided DTU scene cd run ba

Fanbo Xiang 68 Jan 06, 2023
Conversational-AI-ChatBot - Intelligent ChatBot built with Microsoft's DialoGPT transformer to make conversations with human users!

Conversational AI ChatBot Intelligent ChatBot built with Microsoft's DialoGPT transformer to make conversations with human users! In this project? Thi

Rajkumar Lakshmanamoorthy 6 Nov 30, 2022
[NeurIPS 2021] Code for Learning Signal-Agnostic Manifolds of Neural Fields

Learning Signal-Agnostic Manifolds of Neural Fields This is the uncleaned code for the paper Learning Signal-Agnostic Manifolds of Neural Fields. The

60 Dec 12, 2022
📔️ Generate a text-based journal from a template file.

JGen 📔️ Generate a text-based journal from a template file. Contents Getting Started Example Overview Usage Details Reserved Keywords Gotchas Getting

Harrison Broadbent 21 Sep 25, 2022
使用pytorch+transformers复现了SimCSE论文中的有监督训练和无监督训练方法

SimCSE复现 项目描述 SimCSE是一种简单但是很巧妙的NLP对比学习方法,创新性地引入Dropout的方式,对样本添加噪声,从而达到对正样本增强的目的。 该框架的训练目的为:对于batch中的每个样本,拉近其与正样本之间的距离,拉远其与负样本之间的距离,使得模型能够在大规模无监督语料(也可以

58 Dec 20, 2022
Silero Models: pre-trained speech-to-text, text-to-speech models and benchmarks made embarrassingly simple

Silero Models: pre-trained speech-to-text, text-to-speech models and benchmarks made embarrassingly simple

Alexander Veysov 3.2k Dec 31, 2022
The training code for the 4th place model at MDX 2021 leaderboard A.

The training code for the 4th place model at MDX 2021 leaderboard A.

Chin-Yun Yu 32 Dec 18, 2022