Find target hash collisions for Apple's NeuralHash perceptual hash function.💣

Overview

neural-hash-collider

Find target hash collisions for Apple's NeuralHash perceptual hash function.

For example, starting from a picture of this cat, we can find an adversarial image that has the same hash as the picture of the dog in this post:

python collide.py --image cat.jpg --target 59a34eabe31910abfb06f308

Cat image with NeuralHash 59a34eabe31910abfb06f308 Dog image with NeuralHash 59a34eabe31910abfb06f308

We can confirm the hash collision using nnhash.py from AsuharietYgvar/AppleNeuralHash2ONNX:

$ python nnhash.py dog.png
59a34eabe31910abfb06f308
$ python nnhash.py adv.png
59a34eabe31910abfb06f308

How it works

NeuralHash is a perceptual hash function that uses a neural network. Images are resized to 360x360 and passed through a neural network to produce a 128-dimensional feature vector. Then, the vector is projected onto R^96 using a 128x96 "seed" matrix. Finally, to produce a 96-bit hash, the 96-dimensional vector is thresholded: negative entries turn into a 0 bit, and non-negative entries turn into a 1 bit.

This entire process, except for the thresholding, is differentiable, so we can use gradient descent to find hash collisions. This is a well-known property of neural networks, that they are vulnerable to adversarial examples.

We can define a loss that captures how close an image is to a given target hash: this loss is basically just the NeuralHash algorithm as described above, but with the final "hard" thresholding step tweaked so that it is "soft" (in particular, differentiable). Exactly how this is done (choices of activation functions, parameters, etc.) can affect convergence, so it can require some experimentation. After choosing the loss function, we can follow the standard method to find adversarial examples for neural networks: gradient descent.

Details

The implementation currently does an alternating projections style attack to find an adversarial example that has the intended hash and also looks similar to the original. See collide.py for the full details. The implementation uses two different loss functions: one measures the distance to the target hash, and the other measures the quality of the perturbation (l2 norm + total variation). We first optimize for a collision, focusing only on matching the target hash. Once we find a projection, we alternate between minimizing the perturbation and ensuring that the hash value does not change. The attack has a number of parameters; run python collide.py --help or refer to the code for a full list. Tweaking these parameters can make a big difference in convergence time and the quality of the output.

The implementation also supports a flag --blur [sigma] that blurs the perturbation on every step of the search. This can slow down or break convergence, but on some examples, it can be helpful for getting results that look more natural and less like glitch art.

Examples

Reproducing the Lena/Barbara result from this post:

The first image above is the original Lena image. The second was produced with --target a426dae78cc63799d01adc32 to collide with Barbara. The third was produced with the additional argument --blur 1.0. The fourth is the original Barbara image. Checking their hashes:

$ python nnhash.py lena.png
32dac883f7b91bbf45a48296
$ python nnhash.py lena-adv.png
a426dae78cc63799d01adc32
$ python nnhash.py lena-adv-blur-1.0.png
a426dae78cc63799d01adc32
$ python nnhash.py barbara.png
a426dae78cc63799d01adc32

Reproducing the Picard/Sidious result from this post:

The first image above is the original Picard image. The second was produced with --target e34b3da852103c3c0828fbd1 --tv-weight 3e-4 to collide with Sidious. The third was produced with the additional argument --blur 0.5. The fourth is the original Sidious image. Checking their hashes:

$ python nnhash.py picard.png
73fae120ad3191075efd5580
$ python nnhash.py picard-adv.png
e34b2da852103c3c0828fbd1
$ python nnhash.py picard-adv-blur-0.5.png
e34b2da852103c3c0828fbd1
$ python nnhash.py sidious.png
e34b2da852103c3c0828fbd1

Prerequisites

  • Get Apple's NeuralHash model following the instructions in AsuharietYgvar/AppleNeuralHash2ONNX and either put all the files in this directory or supply the --model / --seed arguments
  • Install Python dependencies: pip install -r requirements.txt

Usage

Run python collide.py --image [path to image] --target [target hash] to generate a hash collision. Run python collide.py --help to see all the options, including some knobs you can tweak, like the learning rate and some other parameters.

Limitations

The code in this repository is intended to be a demonstration, and perhaps a starting point for other exploration. Tweaking the implementation (choice of loss function, choice of parameters, etc.) might produce much better results than this code currently achieves.

Owner
Anish Athalye
grad student @mit-pdos
Anish Athalye
Semi-hash-based Image Generator

pixel-planet Semi-hash-based Image Generator Utilizable for NFTs Generation Process Input is salted and hashed Colors (background, planet, stars) are

Bill Ni 3 Sep 01, 2022
A Icon Maker GUI Made - Convert your image into icon ( .ico format ).

Icon-Maker-GUI A Icon Maker GUI Made Using Python 3.9.0 . It will take any image and convert it to ICO file, for web site favicon or Windows applicati

Insanecodes 12 Dec 15, 2021
㊙️ Create standard barcodes with Python. No external dependencies. 100% Organic Python.

python-barcode python-barcode provides a simple way to create barcodes in Python. There are no external dependencies when generating SVG files. Pillow

Hugo Barrera 419 Dec 26, 2022
QR-Generator - An awesome QR Generator to create or customize your QR's

QR Generator An awesome QR Generator to create or customize your QR's! Table of

Tristán 1 Jan 28, 2022
👾 Python project to help you convert any image into a pixel art.

👾 Pixel Art Generator Python project to help you convert any image into a pixel art. ⚙️ Developer's Guide Things you need to get started with this co

Atul Anand 6 Dec 14, 2022
Python Image Morpher (PIM) is a program that can take two images and blend them to whatever extent or precision that you like

Python Image Morpher (PIM) is a program that can take two images and blend them to whatever extent or precision that you like! It is designed to emulate some of Python's OpenCV image processing from

David Dowd 108 Dec 19, 2022
Imutils - A series of convenience functions to make basic image processing operations such as translation, rotation, resizing, skeletonization, and displaying Matplotlib images easier with OpenCV and Python.

imutils A series of convenience functions to make basic image processing functions such as translation, rotation, resizing, skeletonization, and displ

PyImageSearch 4.3k Jan 01, 2023
sK1 2.0 cross-platform vector graphics editor

sK1 2.0 sK1 2.0 is a cross-platform open source vector graphics editor similar to CorelDRAW, Adobe Illustrator, or Freehand. sK1 is oriented for prepr

sK1 Project 238 Dec 04, 2022
This piece of code is a User Welcomer with Image Manipulation using Python and Pillow (PIL).

This piece of code is a User Welcomer with Image Manipulation using Python and Pillow (PIL).

Bero 4 Jan 11, 2022
HyperBlend is a new type of hyperspectral image simulator based on Blender.

HyperBlend version 0.1.0 This is the HyperBlend leaf spectra simulator developed in Spectral Laboratory of University of Jyväskylä. You can use and mo

SILMAE 2 Jun 20, 2022
A Blender add-on to create interesting meshes using symmetry

Procedural Symmetries This Blender add-on automates the process of iteratively applying a set of reflection planes to a base mesh. The result will con

1 Dec 29, 2021
Kainat 13 Mar 07, 2022
Make your master artistic punk avatar through machine learning world famous paintings

Master-art-punk Make your master artistic punk avatar through machine learning world famous paintings. 通过机器学习世界名画制作属于你的大师级艺术朋克头像 Nowadays, NFT is beco

蒋虎成 23 Jan 04, 2022
Using P5.js, Processing and Python to create generative art

Experiments in Generative Art Using Python, Processing, and P5.js Quick Links Daily Sketches March 2021. | Gallery | Repo | Done using P5.js Genuary 2

Ram Narasimhan 33 Jul 06, 2022
Convert bitmap images to seeds for Tiny-83 NFT project.

What is this? This tool allows you to convert any 14p high and 22p wide Bitmap (.bmp) to the seed needed for the Tiny-83 NFT project. Project Twitter:

shib_maximalist 1 Oct 31, 2021
SALaD (Semi-Automatic Landslide Detection) is a landslide mapping system

SALaD (Semi-Automatic Landslide Detection) is a landslide mapping system. SALaD utilizes Object-based Image Analysis and Random Forest to map landslides.

NASA 14 Jan 04, 2023
Python Program that lets you write in your handwriting!

Handwriting with Python Python Program that lets you write in your handwriting! Inspired by: thaisribeiro.in How to run? Install Unidecode and Pillow

Amanda Rodrigues Vieira 2 Oct 25, 2021
Generate meme GIFs in which an image you choose can be viewed by the user only after they wait a whole hour.

Generate meme GIFs in which an image you choose can be viewed by the user only after they wait a whole hour.

Feliks Maak 1 Jan 31, 2022
Scramb.py is a region based JPEG Image Scrambler and Descrambler written in Python

Scramb.py Scramb.py is a region based JPEG Image Scrambler and Descrambler written in Python. Main features Scramb.py can scramble images regions. So

47 Dec 25, 2022