The 3rd place solution for competition

Overview

The 3rd place solution for competition "Lyft Motion Prediction for Autonomous Vehicles" at Kaggle

header

Team behind this solution:

  1. Artsiom Sanakoyeu [Homepage] [Twitter] [Telegram Channel] [LinkedIn]
  2. Dmytro Poplavskiy [Kaggle] [LinkedIn]
  3. Artsem Zhyvalkouski [Kaggle] [Twitter] [GitHub] [LinkedIn]

Explanation of the solution:

โ–ถ๏ธ Video: link
๐Ÿ“œ Blogpost: link
๐Ÿ“ Brief solution writeup: link

How to reproduce results

  1. [Optional] Set the paths in the configs. But the default paths should work as well.
  1. Install dependencies.
  • pip install -r requirements.txt
  • Apply patch to l5kit with ./apply_l5kit_patch.sh (it disables processing of rasterized images to allow rasterizer to return multiple results).
  1. Download and prepare data.
bash prepare_data_train.sh
  1. Train 1st level models.
bash train.sh
  1. Run inference of 1st level models on the test set.
    You may need to change which chekpoints to load when predicting (in predict_test_l1.sh), as the best epoch may change after you retrain the models.
bash prepare_data_test.sh
bash predict_test_l1.sh
  1. Train 2nd level model on the predicts of the 1st level models on the test set.
cd src/2nd_level && python train.py

Make sure you've set all paths right in 2nd_level/config.py w.r.t. the 2nd_level directory.

  1. Predict on the test set using the 2nd level model.
cd src/2nd_level && python infer.py

The file witn final predictions will be saved to `src/2nd_level/submission.csv'.

Directory structure example (i.e., how it should look like after everything is trained and predicted) is in directory_structure.txt.

Extra

  • To skip training the 1st level models, you can download the pretrained weights by running bash download_1st_level_weights.sh.
  • To skip training and inference of the 1st level models, you can download all predicts. More details on this are in src/1st_level/submissions.
  • More details on how to use 2nd level model are in src/2nd_level.
  • Our final 2nd level model with 9.404 Private LB score is already committed in this repository (src/2nd_level/transformer.bin). To run inference using this model you can directly execute cd src/2nd_level && python infer.py.
Owner
Artsiom
https://asanakoy.github.io/
Artsiom
optimization routines for hyperparameter tuning

Hyperopt: Distributed Hyperparameter Optimization Hyperopt is a Python library for serial and parallel optimization over awkward search spaces, which

Marc Claesen 398 Nov 09, 2022
GeneDisco is a benchmark suite for evaluating active learning algorithms for experimental design in drug discovery.

GeneDisco is a benchmark suite for evaluating active learning algorithms for experimental design in drug discovery.

22 Dec 12, 2022
Multi-Glimpse Network With Python

Multi-Glimpse Network Multi-Glimpse Network: A Robust and Efficient Classification Architecture based on Recurrent Downsampled Attention arXiv Require

9 May 10, 2022
ICRA 2021 "Towards Precise and Efficient Image Guided Depth Completion"

PENet: Precise and Efficient Depth Completion This repo is the PyTorch implementation of our paper to appear in ICRA2021 on "Towards Precise and Effic

232 Dec 25, 2022
Convert ONNX model graph to Keras model format.

Convert ONNX model graph to Keras model format.

Grigory Malivenko 175 Dec 28, 2022
COLMAP - Structure-from-Motion and Multi-View Stereo

COLMAP About COLMAP is a general-purpose Structure-from-Motion (SfM) and Multi-View Stereo (MVS) pipeline with a graphical and command-line interface.

4.7k Jan 07, 2023
Code for "The Intrinsic Dimension of Images and Its Impact on Learning" - ICLR 2021 Spotlight

dimensions Estimating the instrinsic dimensionality of image datasets Code for: The Intrinsic Dimensionaity of Images and Its Impact On Learning - Phi

Phil Pope 41 Dec 10, 2022
์‹œ๊ฐ ์žฅ์• ์ธ์„ ์œ„ํ•œ ์Šค๋งˆํŠธ ์ง€ํŒก์ด์— ํ™œ์šฉ๋  ๋”ฅ๋Ÿฌ๋‹ ๋ชจ๋ธ (DL Model Repo)

SmartCane-DL-Model Smart Cane using semantic segmentation ์ฐธ๊ณ ํ•œ Github repositoy ๐Ÿ”— https://github.com/JunHyeok96/Road-Segmentation.git ๋ฐ์ดํ„ฐ์…‹ ๐Ÿ”— https://

๋ฐ˜๋“œ์‹œ ์กธ์—…ํ•œ๋‹ค (Team Just Graduate) 4 Dec 03, 2021
MANO hand model porting for the GraspIt simulator

Learning Joint Reconstruction of Hands and Manipulated Objects - ManoGrasp Porting the MANO hand model to GraspIt! simulator Yana Hasson, Gรผl Varol, D

Lucas Wohlhart 10 Feb 08, 2022
Source code for models described in the paper "AudioCLIP: Extending CLIP to Image, Text and Audio" (https://arxiv.org/abs/2106.13043)

AudioCLIP Extending CLIP to Image, Text and Audio This repository contains implementation of the models described in the paper arXiv:2106.13043. This

458 Jan 02, 2023
Codes for paper "KNAS: Green Neural Architecture Search"

KNAS Codes for paper "KNAS: Green Neural Architecture Search" KNAS is a green (energy-efficient) Neural Architecture Search (NAS) approach. It contain

90 Dec 22, 2022
Implementation for Shape from Polarization for Complex Scenes in the Wild

sfp-wild Implementation for Shape from Polarization for Complex Scenes in the Wild project website | paper Code and dataset will be released soon. Int

Chenyang LEI 41 Dec 23, 2022
Reinforcement Learning for the Blackjack

Reinforcement Learning for Blackjack Author: ZHA Mengyue Math Department of HKUST Problem Statement We study playing Blackjack by reinforcement learni

Dolores 3 Jan 24, 2022
Code for ICML 2021 paper: How could Neural Networks understand Programs?

OSCAR This repository contains the source code of our ICML 2021 paper How could Neural Networks understand Programs?. Environment Run following comman

Dinglan Peng 115 Dec 17, 2022
LogDeep is an open source deeplearning-based log analysis toolkit for automated anomaly detection.

LogDeep is an open source deeplearning-based log analysis toolkit for automated anomaly detection.

donglee 279 Dec 13, 2022
Meta-learning for NLP

Self-Supervised Meta-Learning for Few-Shot Natural Language Classification Tasks Code for training the meta-learning models and fine-tuning on downstr

IESL 43 Nov 08, 2022
A Robust Non-IoU Alternative to Non-Maxima Suppression in Object Detection

Confluence: A Robust Non-IoU Alternative to Non-Maxima Suppression in Object Detection 1. ไป‹็ป ็”จไปฅๆ›ฟไปฃ NMS๏ผŒๅœจๆ‰€ๆœ‰ bbox ไธญๆŒ‘้€‰ๅ‡บๆœ€ไผ˜็š„้›†ๅˆใ€‚ NMS ไป…่€ƒ่™‘ไบ† bbox ็š„ๅพ—ๅˆ†๏ผŒ็„ถๅŽๆ นๆฎ IOU ๆฅ

44 Sep 15, 2022
RID-Noise: Towards Robust Inverse Design under Noisy Environments

This is code of RID-Noise. Reproduce RID-Noise Results Toy tasks Please refer to the notebook ridnoise.ipynb to view experiments on three toy tasks. B

Thyrix 2 Nov 23, 2022
Google Recaptcha solver.

byerecaptcha - Google Recaptcha solver. Model and some codes takes from embium's repository -Installation- pip install byerecaptcha -How to use- from

Vladislav Zenkevich 21 Dec 19, 2022
Official implementation of UTNet: A Hybrid Transformer Architecture for Medical Image Segmentation

UTNet (Accepted at MICCAI 2021) Official implementation of UTNet: A Hybrid Transformer Architecture for Medical Image Segmentation Introduction Transf

110 Jan 01, 2023